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LOCAL TIME-INTEGRATION FOR FRIEDRICHS’ SYSTEMS∗

MARLIS HOCHBRUCK† AND MALIK SCHEIFINGER†

Abstract. In this paper, we address the full discretization of Friedrichs’ systems with a two-
field structure, such as Maxwell’s equations or the acoustic wave equation in div-grad form, cf. [14].
We focus on a discontinuous Galerkin space discretization applied to a locally refined mesh or a
small region with high wave speed. This results in a stiff system of ordinary differential equations,
where the stiffness is mainly caused by a small region of the spatial mesh. When using explicit
time-integration schemes, the time step size is severely restricted by a few spatial elements, leading
to a loss of efficiency. As a remedy, we propose and analyze a general leapfrog-based scheme which
is motivated by [5]. The new, fully explicit, local time-integration method filters the stiff part of the
system in such a way that its CFL condition is significantly weaker than that of the leapfrog scheme
while its computational cost is only slightly larger. For this scheme, the filter function is a suitably
scaled and shifted Chebyshev polynomial. While our main interest is in explicit local-time stepping
schemes, the filter functions can be much more general, for instance, a certain rational function
leads to the locally implicit method, proposed and analyzed in [24]. Our analysis provides sufficient
conditions on the filter function to ensure full order of convergence in space and second order in time
for the whole class of local time-integration schemes.

Key words. time integration, space discretization, Friedrichs’ system, wave-type problems,
local time-stepping methods, locally implicit methods, stability analysis, error analysis, discontinuous
Galerkin

MSC codes. 65M12, 65M15, 65M22

1. Introduction. The aim of this paper is to construct and analyze a new lo-
cal time-integration (LTI) method for the discontinuous Galerkin (dG) space dis-
cretization of Friedrichs’ systems in a two-field structure. Using an explicit time-
integrator like the leapfrog method on the full spatial domain necessitates satisfying a
Courant–Friedrichs–Lewy (CFL) condition, meaning that the time stepsize τ is pro-
portional to the inverse of the smallest diameter within the spatial mesh. On the
other hand, implicit methods like the Crank-Nicolson method are unconditionally
stable, but require the solution of large linear systems of equations. We are inter-
ested in problems, where the CFL condition is dominated by a small number of mesh
elements, i.e., tiny elements or elements with a high wave speed. In this situation,
standard explicit or implicit methods are inefficient. The basic idea of LTI methods
is to use an explicit time-integrator, for example the leapfrog method, on the large,
nonstiff part of the system and to couple it to a tailored method on the small, stiff
part. The modified method can either be an explicit method with a weaker CFL
condition (resulting in a local time-stepping (LTS) method) or an unconditionally
stable implicit scheme (leading to a locally-implicit (LI) method). Overall one aims
at using a method with a CFL condition which only depends on the nonstiff part of
the system. Since the higher computational cost of the modified method arises only
on a small part of the degrees of freedom, the construction leads to a problem adapted
and efficient local time-integration scheme.

In recent years, many LTI schemes were introduced for different wave-type equa-
tions. LTS methods for the acoustic wave equation in second-order formulation were
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2 M. HOCHBRUCK, M. SCHEIFINGER

constructed in [1, 6, 11, 12, 16, 17, 19, 20], for Maxwells equations in second-order
formulation in [18, 26, 27, 29] and LI methods for Maxwells equations in [7, 8, 9, 13,
24, 25, 30, 32], for instance. Moreover, in [14] the LI method from [24] was generalized
to Friedrichs’ systems.

However, to the best of our knowledge fully explicit LTS methods for Friedrichs’
systems have not been considered so far. Here, we construct and analyze a class of
leapfrog-based LTI schemes motivated by [6]. We will show that the method is stable
under a CFL condition which is independent of the stiff part of the problem and is
of second-order in time and optimal order in space. As a special case, one variant of
the LTI scheme corresponds to the LI method from [14] and the theoretical results
reduce to the ones given there.

Outline. The paper is structured as follows. First, in Section 2, we briefly review
Friedrichs’ systems and introduce the notation which we will use throughout the
paper.

Our main results are contained in Section 3. Here, we start with an introduction of
the splitting of the discrete operators into a stiff and a nonstiff part. Then, we present
the new LTI scheme based on the leapfrog method with a general filter function
and study its stability. Important examples leading to LTS and LI methods are
discussed in detail. For the whole class of methods, we prove stability if a time
stepsize restriction based on properties of the filter function is satisfied. Moreover,
we prove that LTI methods satisfy error bounds with optimal order in space and
second-order in time.

At last, in Section 4, we present numerical experiments which substantiate our
theoretical results for Maxwells equations. Moreover, we show that the LTS method
outperforms the LI and the leapfrog method on these test problems.

2. Friedrichs’ systems. Let Ω ⊂ Rd be an open, polygonal domain and denote
its boundary by Γ = ∂Ω.

Following [14, §11.2] we consider the two-field structured Friedrichs’ system

∂tu = Lvv + gu, on Ω× R+,(2.1a)
∂tv = Luu+ gv, on Ω× R+,(2.1b)

u(0) = u0, v(0) = v0, on Ω

with initial values u0, v0 and right-hand-side g. The Friedrichs’ operators Lu and Lv

are given as

(2.2) MvLuu =

d∑
i=1

Li∂iu, MuLvv =

d∑
i=1

LT
i ∂iv,

with Li ∈ Rmv×mu for i = 0, . . . , d. The material tensors Mu ∈ L∞(Ω)mu×mu , Mv ∈
L∞(Ω)mv×mv are assumed to be symmetric and positive definite, and mu,mv ∈ N
denote the number of components of u and v. The boundary conditions of (2.1) are
embodied into the domains D(Lu) and D(Lv), see [10, 14] for details. We further
assume that the boundary conditions do not introduce damping, cf. [14, Assump.
11.8]. This leads to the important adjointness property

(2.3)
(
Luu, v

)
= −

(
u,Lvv

)
for all u ∈ D(Lu), v ∈ D(Lv).

Special cases are linear Maxwells equations or the acoustic wave-equation in div-grad
formulation, for details see [10, §7.1] or [14, §9.3].
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2.1. Notation. Let K ⊆ Rd be open. For two vector-valued functions u, ũ ∈
L2(K)mu we denote the L2-inner product by(

u, ũ
)
L2(K)

=

ˆ
K

u · ũdx

and the L2-inner product weighted by Mu as(
u, ũ

)
K

=
(
u, ũ

)
Mu,K

=
(
Muu, ũ

)
L2(K)

,

where we supress the indices Mu whenever possible. The inner product weighted by
Mv is defined analogously. From the arguments of the inner product it is clear which
weight is used. The induced norms are denoted accordingly.

Furthermore, we denote by ∂i the ith weak derivative, i = 1, . . . , d. Higher
derivatives are denoted by ∂α = ∂α1

1 . . . ∂αd

d for a multi index α ∈ Nd
0, and we write

|α| = α1 + · · ·+ αd.
The Sobolev spaces in L2(K) are denoted as Hℓ(K), ℓ ∈ N0, and are equipped

with the weighted norms

∥u∥2ℓ,K = ∥u∥2Mu,ℓ,K =

ℓ∑
j=0

|u|2Mu,j,K
, |u|2j,K = |u|2Mu,j,K

=
∑
|α|=j

∥∂αu∥2Mu,K .

Again we suppress the index Mu whenever possible.
In what follows, we recall some notation and results from [10, 14]. We denote by

Th meshes of Ω which we assume to be admissible [10, Def. 1.57]. By hK we denote
the diameter of a cell K ∈ Th . We further define h ∈ L∞(Ω) by h|K = hK and
hmax = maxK hK as well as hmin = minK hK .

For each component of (2.1) we denote by

Vu
h = {u ∈ L2(Ω) | u|K ∈ Pk

d(K) for all K ∈ Th}mu ,

Vv
h = {v ∈ L2(Ω) | v|K ∈ Pk

d(K) for all K ∈ Th}mv ,

the spaces of broken polynomials of total degree at most k and the product space by
Vh = Vu

h × Vv
h .

Furthermore, we symbolize the L2-projection w.r.t. the weighted inner product(
·, ·
)
Ω

by πh : L
2(Ω) → Vh , see [14] for details.

At last, we recall the broken Sobolev spaces

Hℓ(Th) = {u ∈ L2(Ω) | u|K ∈ Hℓ(K) for all K ∈ Th}.

with weighted norms

∥u∥2ℓ,Th
=

ℓ∑
j=0

|u|2j,Th
, |u|2j,Th

=
∑

K∈Th

|u|2j,K .

3. Local time-integration. After a central-fluxes dG discretization [14, 15, 22],
the spatially discrete wave-type problem (2.1) takes the form

∂tuh = Lv,hvh + gu,h , on R+,(3.1a)

∂tvh = Lu,huh + gv,h , on R+,(3.1b)

uh(0) = πhu
0, vh(0) = πhv

0, gh = πhg,(3.1c)
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where the discrete operators Lu,h ,Lv,h inherit the adjointness property (2.3), i.e.,

(3.2)
(
Lu,huh , vh

)
Ω
= −

(
uh ,Lv,hvh

)
Ω

for all uh ∈ Vu
h , vh ∈ Vv

h .

Before we present our local time-integration scheme, we follow [24] and split the mesh
into two parts

(3.3) Th = Th,f ∪̇ Th,c.

The set Th,f contains all elements with a small diameter or a high wave speed and
the set Th,c all others. We further define

hc,min = min
K∈Th,c

hK , hf,min = min
K∈Th,f

hK .(3.4)

Our approach necessitates an additional division of the mesh such that the set Th,m
contains also the neighbors of elements in Th,f and Th,lf only contains coarse elements
with coarse neighbors, i.e.,

Th,m = {K ∈ Th : ∃Kf ∈ Th,f s.t. K,Kf share a face},
Th,lf = Th \ Th,m.

This one extra layer of coarse elements in Th,m is essential to the independence of
small mesh diameters or high wave speeds in the CFL condition as we will prove later
on.

We further define the cutoff-operators

(3.5) χmu =

{
u, on K ∈ Th,m,

0, on K ∈ Th,lf ,
and χlfu =

{
0, on K ∈ Th,m,

u, on K ∈ Th,lf .

Now we are able to propose our local time-integration method. With a smooth func-
tion Ψ: [0,∞) → R satisfying Ψ(0) = 1, the fully discrete local time-integration
scheme is defined as

v
n+1/2
h − vnh = τ

2Lu,hu
n
h + τ

2 g
n+1/2
v,h ,(3.6a)

un+1
h − un

h = τΨ
(
Lv,hv

n+1/2
h + g

n+1/2
u,h

)
,(3.6b)

vn+1
h − v

n+1/2
h = τ

2Lu,hu
n+1
h + τ

2 g
n+1/2
v,h ,(3.6c)

Ψ = Ψ(−τ2Lv,hχmLu,h) .(3.6d)

Note that in [6] we used the notation Ψ̂ instead of Ψ.
We denote by

(3.7) g
n+1/2
h = 1

2 (g
n+1
h + gnh)

the average of gh at two consecutive time steps. Note that the filter function Ψ and
hence the modified method only work on Th,m plus coupling and that for Ψ ≡ 1, the
scheme reduces to the leapfrog scheme.

The remaining part of this paper is devoted to the proof of the following full-
discretization error estimate.
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Theorem 3.1. For xn
h =

(
un
h vnh

)
given by (3.6) with τ satisfying a CFL condi-

tion independent of hf,min and a sufficiently regular solution x =
(
u v

)
of (2.1) we

obtain

∥x(tn)− xn
h∥Ω ≤ C(τ2 + hk

max)(3.8)

with a constant C independent of τ and hmax.

Details on the CFL condition will be given later.

3.1. Stability. In the following, we assume that Ψ defined in (3.6d) is invertible,
which is indeed the case under a certain restriction on the time stepsize as we will
later see. We start by rewriting (3.6) into a system inspired by the analysis of the
Crank-Nicolson method [24] imitating a discrete semi-group technique. To do so, we
define

R± =

(
Θ ± τ

2Lv,h

± τ
2Lu,h Iv

)
− τ2

4

(
−Lv,hχlfLu,h 0

0 0

)
(3.9a)

with

Θ = Θ(−τ2Lv,hχmLu,h),(3.9b)

Θ(z) = Ψ(z)−1
(
1− z

4
Ψ(z)

)
=

1

Ψ(z)
− z

4
, Θ(0) = 1.(3.9c)

In Table 1, we collect special choices of Ψ and Θ together with certain parameters,
which we will introduce later for the analysis. More details will be given in Section 3.3
below.

Lemma 3.2. The approximations xn
h =

(
un
h vnh

)
of the local time-integration

scheme (3.6) satisfy

(3.10) R−x
n+1
h = R+x

n
h + τg

n+1/2
h , g

n+1/2
h =

(
g
n+1/2
u,h

g
n+1/2
v,h

)
.

A key idea is to split R± into a positive definite operator ΘI , a skew-adjoint operator
Lh , and a self-adjoint, positive semidefinite perturbation operator Dlf via

(3.11a) R± = ΘI ± τ
2Lh − τ2

4 Dlf ,

where

(3.11b) ΘI =

(
Θ 0
0 Iv

)
, Lh =

(
0 Lv,h

Lu,h 0

)
, Dlf =

(
−Lv,hχlfLu,h 0

0 0

)
.

Here, the adjointness condition (3.2) directly implies that Lh is skew-adjoint, Dlf and
Θ are self-adjoint, and that Dlf is positive semidefinite. However, the definiteness
of ΘI is only guaranteed for special choices of Θ (see Table 1) or under additional
conditions on its argument −τ2Lv,hχmLu,h in (3.9b). To ensure this, we introduce
additional notation.

Definition 3.3. Let Ψ: [0,∞) → R be a smooth function satisfying Ψ(0) = 1
and consider Θ defined in (3.9c). For a constant cΘ ∈ (0, 1] we define βΨ = βΨ(cΘ) ∈
(0,∞] as the maximum value such that

(3.12) 0 < Ψ(z) ≤ 1 and Θ(z) ≥ cΘ for all z ∈ [0, β2
Ψ] ∩ R,

and βΨ = ∞, if (3.12) holds for all z ≥ 0.
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Ψ Θ φ β2
Ψ cΘ Cφ

Leapfrog 1 1− z
4 − 1

4 4(1− cΘ) 1− ϑ2 1
4

Crank-Nicolson (1 + z
4 )

−1 1 0 ∞ 1 0

Leapfrog-Chebychev (3.41) (3.9c) (3.32a) (3.42b) (3.42a) (3.42b)

Table 1: Examples for filter functions with corresponding constants.

The parameters β2
Ψ and cΘ directly enter the CFL conditions to ensure stability of

the scheme.

Definition 3.4. For given ϑ, ϑc ∈ (0, 1] we define

τ2CFL,Ψ =
β2
Ψ

∥Lv,hχmLu,h∥
,(3.13a)

τ2CFL,lf,c = τ2CFL,lf,c(ϑc) =
4cΘϑ

2
c

∥Lv,hχlfLu,h∥
,(3.13b)

and

τ2CFL,lf = τ2CFL,lf(ϑ) =
4ϑ2

∥Lv,hLu,h∥
.(3.14)

Recall that the leapfrog scheme on the whole spatial domain is stable if τ ≤ τCFL,lf .
Obviously, we aim at choosing Ψ in such a way that the CFL condition of the local
time-integration method is significantly relaxed compared to the leapfrog scheme. For
the dependence of the CFL condition on the submeshes and the material parameters,
note that

∥Lv,hχlfLu,h∥ ≲ h−2
c,min, ∥Lv,hχmLu,h∥ ≲ h−2

f,min,

with constants that depend on the largest eigenvalue of M−1
u LT

i M−1
v Li, i = 1, . . . , d,

on Th,c and Th,f respectively, cf. [23, Eq. 6] or [10, Lem. 7.32]. Roughly speaking, the
largest eigenvalues scale like the inverse of the product of the smallest eigenvalues of
Mu and Mv on the respective submeshes. It is important to note that the eigenvalues
of Lv,hχlfLu,h and hence τCFL,lf,c are independent of the material parameters and the
diameters within the fine mesh Th,f , cf. [14, 24] for details.

Lemma 3.5. For τ ≤ τCFL,Ψ defined (3.13a), the operator Θ induces a norm ∥·∥Θ
such that for all uh ∈ Vu

h we have

(3.15) cΘ∥uh∥2Ω ≤ ∥uh∥2Θ =
(
Θuh , uh

)
Ω
.

Proof. The statement follows immediately from (3.12) since we can bound the
eigenvalues z of −τ2Lv,hχmLu,h by β2

Ψ if τ ≤ τCFL,Ψ.

Lemma 3.5 implies that ΘI defined in (3.9b) is also self-adjoint and positive definite
for τ ≤ τCFL,Ψ and hence it induces a norm ∥ · ∥ΘI on Vh .

Using both CFL conditions in (3.13) we can bound the action of the operators
R± defined in (3.9a) from below.
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Lemma 3.6. Let ϑc ∈ (0, 1) and τ ≤ min{τCFL,lf,c(ϑc), τCFL,Ψ} satisfy the CFL
conditions (3.13). Then we have

(3.16) cΘ(1− ϑ2
c)∥uh∥2Ω + ∥vh∥2Ω ≤

(
R±xh , xh

)
Ω
.

for all xh =
(
uh vh

)
∈ Vh .

Proof. Let xh =
(
uh vh

)
∈ Vh . Using (3.11b) and (3.13b) we obtain

τ2

4

(
Dlfxh , xh

)
Ω
= − τ2

4

(
Lv,hχlfLu,huh , uh

)
Ω
≤ cΘϑ

2
c∥uh∥2Ω,

and thus with (3.11a) and (3.15)(
R±xh , xh

)
Ω
=
(
Θuh , uh

)
Ω
+ ∥vh∥2Ω − τ2

4

(
Dlfxh , xh

)
Ω

≥ cΘ(1− ϑ2
c)∥uh∥2Ω + ∥vh∥2Ω.

This proves the statement.

In the next Lemma 3.7 we show that the CFL condition for the local time-
integration scheme (3.6) can not become stronger than that of the leapfrog scheme
used on the whole grid.

Lemma 3.7. Let ϑ ∈ (0, 1), xh =
(
uh vh

)
∈ Vh , and τ ≤ τCFL,lf(ϑ) defined

in (3.14). Moreover, assume that 0 < Ψ(z) ≤ 1 holds for all z ∈ [0, 4]. Then we have

(3.17)
(
R±xh , xh

)
Ω
≥ (1− ϑ2)∥uh∥2Ω + ∥vh∥2Ω.

Proof. By assumption, Ψ is invertible since the leapfrog CFL condition (3.14)
implies ∥ − τ2Lv,hLu,h∥Ω ≤ 4ϑ2 ≤ 4 and thus

(
Ψ−1uh , uh

)
Ω
≥ ∥uh∥2Ω. Using (3.9c)

we can write

Θ+ τ2

4 Lv,hχlfLu,h = Ψ−1 + τ2

4

(
Lv,hχmLu,h + Lv,hχlfLu,h

)
= Ψ−1 + τ2

4 Lv,hLu,h .

From (3.9a) and the CFL condition (3.14) we conclude(
R±xh , xh

)
Ω
=
(
(Θ+ τ2

4 Lv,hχlfLu,h)uh , uh

)
Ω
+ ∥vh∥2Ω

≥ (1− ϑ2)∥uh∥2Ω + ∥vh∥2Ω.

This completes the proof.

Lemma 3.6 and the splitting of R± in (3.9a) lead to the following properties.

Lemma 3.8. Let τ ≤ min{τCFL,Ψ, τCFL,lf,c} defined in (3.13) for some ϑc ∈ (0, 1).
Then, for xh , yh ∈ Vh and R = R−1

− R+ we have for n = 0, 1, 2, . . . the identities(
R−xh , yh

)
Ω
=
(
xh ,R+yh

)
Ω
,(3.18a) (

R−Rnxh ,Rnxh

)
Ω
=
(
R−xh , xh

)
Ω
,(3.18b) (

R−RnR−1
− xh ,RnR−1

− xh

)
Ω
=
(
R−1

− xh , xh

)
Ω
,(3.18c)

and in addition the bounds

∥Rnxh∥Ω ≤ Cstb, c∥xh∥ΘI ,(3.19a)

∥RnR−1
− xh∥Ω ≤ Cstb, c∥xh∥Ω,(3.19b)

∥R−1
± xh∥Ω ≤ ∥xh∥Ω,(3.19c)

with Cstb, c = (cΘ(1− ϑ2
c))

−1/2.
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Proof. The adjointness property (3.18a) follows from the skew-adjointness of Lh

and the self-adjointness of Lv,hχlfLu,h , while (3.18b) can be seen by induction with(
R−Rxh ,Rxh

)
Ω
=
(
R+xh ,Rxh

)
Ω

=
(
xh ,R−Rxh

)
Ω

=
(
xh ,R+xh

)
Ω

=
(
R−xh , xh

)
Ω
.

One can easily verify that the inverses are given by

R−1
± =

(
Ψ ∓ τ

2ΨLv,h

∓ τ
2Lu,hΨ Iv + τ2

4 Lu,hΨLv,h

)
=

(
Ψ

Iv + τ2

4 Lu,hΨLv,h

)
∓ τ

2

(
ΨLv,h

Lu,hΨ

)
.(3.20)

These are decompositions of R−1
± into their symmetric and skew-symmetric parts.

Replacing xh by R−1
− xh in (3.18b) proves (3.18c). Furthermore, (3.16) and

(3.18b) imply

cΘ(1− ϑ2
c)∥Rnxh∥2Ω ≤

(
R−Rnxh ,Rnxh

)
Ω

=
(
R−xh , xh

)
Ω

= ∥xh∥2ΘI
−
(
Dlfxh , xh

)
Ω
≤ ∥xh∥2ΘI

,

where we have used the positive semi-definiteness of Dlf in the last estimate. This
proves (3.19a).

By (3.12), Ψ is positive definite if the CFL condition (3.13a) is satisfied. Thus
we have with the adjointness property (3.2)(

Lu,hΨLv,hvh , vh
)
Ω
= −

(
ΨLv,hvh ,Lv,hvh

)
Ω
≤ 0

which shows(
R−1

± xh , xh

)
Ω
=
(
Ψuh , uh

)
Ω
+
(
vh , vh

)
Ω
+ τ2

4

(
Lu,hΨLv,hvh , vh

)
Ω

≤ ∥xh∥2Ω.

and with this (3.19c). Using (3.16), (3.18c) and (3.19c) shows

cΘ(1− ϑ2
c)∥RnR−1

− xh∥2Ω ≤
(
R−RnR−1

− xh ,RnR−1
− xh

)
Ω

=
(
R−1

− xh , xh

)
Ω

≤ ∥xh∥2Ω

and hence (3.19b).

With the previous Lemma 3.8 we conclude the following stability estimate.

Lemma 3.9 (Stability). Let xn+1
h be defined in (3.10). Under the same assump-

tions as in Lemma 3.8 the numerical solution is bounded by

(3.21) ∥xn+1
h ∥Ω ≤ Cstb, c

(
∥x0

h∥ΘI + τ

n∑
j=0

∥gj+1/2
h ∥Ω

)
.
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Proof. Since R−1
− is invertible, the scheme (3.10) is equivalent to

xn+1
h = Rxn

h + τR−1
− g

n+1/2
h , R = R−1

− R+.

Then, the discrete variation-of-constants formula yields

(3.22) xn+1
h = Rn+1x0

h + τ

n∑
j=0

Rn−jR−1
− g

j+1/2
h .

The claim now follows from (3.19a) and (3.19b) and the triangle inequality.

3.2. Error analysis of the local time-integration scheme. In the following
we denote the exact solution of (2.1) evaluated at time tn by

(3.23) x̂n = x(tn), x =
(
u v

)
.

The error of the full discretization is given by

(3.24) en = x̂n − xn
h = enπ + enh , enπ = x̂n − πh x̂

n, enh = πh x̂
n − xn

h ,

where enπ denotes the L2-projection error and enh the discretization error respectively.
To define defects δn+1

h we insert the L2-projected exact solution into the numerical
scheme (3.10). This yields

R−πh x̂
n+1 = R+πh x̂

n + τg
n+1/2
h + τδn+1

h .(3.25)

Subtracting (3.10) from (3.25) yields the error recursion

(3.26) R−e
n+1
h = R+e

n
h + τδn+1

h .

This recursion is of the same form as (3.10). Hence, we can apply Lemma 3.9 to bound
the error. Unfortunately, it will turn out later, that we need a more careful inspec-
tion of the defects to deal with the cutoff functions within the Friedrichs’ operators.
Otherwise, this would lead to suboptimal error bounds.

Theorem 3.10. Let τ ≤ min{τCFL,Ψ, τCFL,lf,c} defined in (3.13) for some ϑc ∈
(0, 1). If one can decompose the defect into

(3.27a) δjh = δjh,s + Lhδ
j
h,Lh

with δjh,Lh
=

(
0

δjh,v,Lh

)
,

then it holds

∥en+1
h ∥Ω ≤ Cstb, c

(
∥e0h∥ΘI + τ

n+1∑
j=1

∥δjh,s∥Ω + ∥δ1h,v,Lh
∥Ω + τ

n+1∑
j=2

∥∂τδjh,v,Lh
∥Ω
)

+ ∥δn+1
h,v,Lh

∥Ω .(3.27b)

Here,

(3.27c) ∂τ û
n+1 = 1

τ (û
n+1 − ûn)

denotes the discrete time derivative of a function û.
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Proof. Solving the error recursion (3.26) with the discrete variation-of-constants
formula yields

(3.28)

en+1
h = Rn+1e0h + τ

n∑
j=0

Rn−jR−1
− δj+1

h

= Rn+1e0h + τ

n∑
j=0

Rn−jR−1
− δj+1

h,s +

n∑
j=0

Rn−j(R− I)δj+1
h,Lh

,

since

τR−1
− Lhδ

j+1
h,Lh

= R−1
− (R+ −R−)δ

j+1
h,Lh

= (R− I)δj+1
h,Lh

.

Now we use the well-known summation by parts formula: for suitable sequences {ρj}j
and {δj}j we have

(3.29)
n∑

j=0

ρn−jδj+1 = rnδ1 +

n∑
j=1

rn−j(δj+1 − δj), rk =

k∑
j=0

ρj .

For ρk = Rk(R− I), this yields rk = Rk+1 − I and

n∑
j=0

Rn−j(R− I)δj+1
h,Lh

= Rn+1δ1h,Lh
− δn+1

h,Lh
+ τ

n∑
j=1

Rn−j+1∂τδ
j+1
h,Lh

.

The bounds (3.19a) and (3.19b) imply (3.27b), since the first component of the defect
δh,Lh

vanishes.

For the discrete time-derivative (3.27c) of a sufficiently smooth function u, a simple
calculation shows the representations

(3.30) ∂τ û
n+1 =

ˆ 1

0

∂tu(t
n + τs) ds, ∂2

τ û
n+1 =

ˆ 1

−1

(1− |s|)∂2
t u(t

n + τs) ds.

Note that the avarage ∂tû
n+1/2 corresponds to the trapezoidal rule applied to the first

integral in (3.30). It is well-known that the error

(3.31a) δn+1
tr,u = ∂τ û

n+1 − ∂tû
n+1/2

satisfies

(3.31b) ∥δn+1
tr,u ∥Ω ≤ τ2

8

ˆ 1

0

∥∂3
t u(t

n + τs)∥Ω ds .

Moreover, we define

(3.32a) φ = φ(−τ2Lv,hχmLu,h), with φ(z) =
Θ(z)− 1

z
, z > 0,

and set φ(0) = Θ′(0). In addition, we will use

(3.32b) φ̃ = φ(−τ2χmLu,hLv,hχm).

Note that the nonzero eigenvalues of χmLu,hLv,hχm and Lv,hχmLu,h coincide.
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Furthermore, we recall the consistency and approximation properties of the dG
discretized Friedrichs’ operators Lw,h , with w ∈ {u, v},

Lw,hw = πhLww for all w ∈ D(Lw) ∩H1(Th)mw ,(3.33a)

∥Lw,heπ,w∥Ω ≤ Cπ,L,w|hkw|k+1,Th
for all w ∈ D(Lw) ∩Hk+1(Th)mw ,(3.33b)

cf. [10, 14].
To derive a representation of the defect δjh defined in (3.25), we write (3.11) as a

perturbation of the Crank-Nicolson scheme.

Lemma 3.11. The operators R± defined in (3.11) satisfy

(3.34a) R± = R±,CN + LhDLTI,

where we have

(3.34b) R±,CN = I ± τ
2Lh and DLTI = τ2

(
0 0
0 1

4χlfIv − φ̃χm

)
Lh .

Proof. The resprentation follows from the definiton of φ in (3.32a) and χm = χ2
m

since

Θ = Iu − τ2Lv,hχmLu,hφ = Iu − τ2Lv,hχmφ̃χmLu,h ,

where the second equality follows from [21, Cor. 1.34].

With Lemma 3.11, we can split the defect δjh defined in (3.25) as

(3.35a) δjh = δjh,CN + Lhδ
j
h,LTI

with

δjh,CN = πh∂τ x̂
j − Lhπh x̂

j−1/2 − g
j−1/2
h ,(3.35b)

δjh,LTI = DLTIπh∂τ x̂
j

= DLTI∂τ x̂
j −DLTI∂τe

j
π.(3.35c)

The first component of δjh,LTI vanishes such that we can apply Theorem 3.10 later.
We now have to bound the defect (3.35a). Following [14, Lemma 12.2] the de-

fect (3.35b) stemming from the Crank-Nicolson scheme can be bounded under appro-
priate regularity assumptions on the exact solution of (2.1) as

(3.36) ∥δjh,CN∥Ω ≤ Cπ,L|hkûj−1/2|k+1,Th
+ τ2

8

ˆ 1

0

∥∂3
t v(t

j−1 + τs)∥Ω ds.

To bound the defect (3.35c) we need a bound on φ introduced in (3.32a).

Definition 3.12. With βΨ from Definition 3.3, we define Cφ as the smallest
constant such that for φ defined in (3.32a) it holds

(3.37) |φ(z)| ≤ Cφ for all z ∈ [0, β2
Ψ] ∩ R.

Note that such a bound exists since φ is continuous on [0, β2
Ψ] and hence bounded.

Now we are able to state a bound for the defect (3.35c) under appropriate regu-
larity assumptions on the exact solution of (2.1).
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Lemma 3.13. Let x =
(
u v

)
with

x ∈ C(t0, T ;D(L) ∩Hk+1(Th)m) ∩ C3(t0, T ;L2(Ω)m)

be the solution of (2.1) and τ ≤ τCFL,Ψ defined in (3.4). We further assume

gv ∈ C2(t0, T ;L2(Ω)mv ).

Then the defect (3.35c) is bounded by

∥δn+1
h,LTI∥Ω ≤ τ2Ĉφ

(
Cπ,L|hk∂τ û

n+1|k+1,Th
+

ˆ 1

0

∥∂2
t v(t

n + τs)∥Ω ds(3.38a)

+

ˆ 1

0

∥∂tgv(tn + τs)∥Ω ds
)

∥∂τδn+1
h,LTI∥Ω ≤ τ2Ĉφ

(
Cπ,L|hk∂2

τ û
n+1|k+1,Th

+

ˆ 1

−1

∥∂3
t v(t

n + τs)∥Ω ds(3.38b)

+

ˆ 1

−1

∥∂2
t gv(t

n + τs)∥Ω ds
)

with Ĉφ =
√
2max{ 1

4 , Cφ}.
Proof. With (3.33a), (3.33b), (3.37), and (2.1) we get

∥δn+1
h,LTI∥Ω ≤ τ2

4 ∥χlfπh∂τ∂tv̂
n+1∥Ω + τ2Cφ∥χmπh∂τ∂tv̂

n+1∥Ω
+ τ2

4 ∥χlfπh∂τg
n+1
v ∥Ω + τ2Cφ∥χmπh∂τg

n+1
v ∥Ω

+ τ2CφCπ,L|χmhk∂τ û
n+1|k+1,Th

+ τ2

4 Cπ,L|χlfh
k∂τ û

n+1|k+1,Th

and in the same manner

∥∂τδn+1
h,LTI∥Ω ≤ τ2

4 ∥χlfπh∂
2
τ∂tv̂

n+1∥Ω + τ2Cφ∥χmπh∂
2
τ∂tv̂

n+1∥Ω
+ τ2

4 ∥χlfπh∂
2
τg

n+1
v ∥Ω + τ2Cφ∥χmπh∂

2
τg

n+1
v ∥Ω

+ τ2CφCπ,L|χmhk∂2
τ û

n+1|k+1,Th
+ τ2

4 Cπ,L|χlfh
k∂2

τ û
n+1|k+1,Th

.

Using (3.30) completes the proof.

Now we state our main theorem which yields under certain regularity assumptions
convergence of order two in time and order k in space if we choose as dG polynomial
degree k.

Theorem 3.14. By the same regularity assumptions as in Lemma 3.13 together
with τ ≤ min{τCFL,lf,c, τCFL,Ψ} and x0

h = πhx(t
0), the error of the full discretization

satisfies

∥x(tn+1)− xn+1
h ∥Ω ≤ C(τ2 + hk

max)(3.39)

with a constant C independent of τ and h.

Proof. The projection error in (3.24) is bounded by

∥en+1
π ∥Ω ≤ Cπ|hk+1x̂n+1|k+1,Th

,
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cf. [14, Lemma 3.2]. With Theorem 3.10, Lemma 3.13, and x0
h = πh x̂

0 we get for the
discretization error

∥en+1
h ∥Ω ≤ Cstb, c

(
τ

n+1∑
j=1

∥δjh,s∥Ω + ∥δ1h,v,Lh
∥Ω + τ

n+1∑
j=2

∥∂τδjh,v,Lh
∥Ω
)
+ ∥δn+1

h,v,Lh
∥Ω

≤ Cstb, c

(
τ2

8
∥∂3

t x∥L1([t0,T ],L2(Ω))

+ 2τ2Ĉφ

(
∥∂3

t v∥L1([t0,T ],L2(Ω)) + ∥∂2
t gv∥L1([t0,T ],L2(Ω))

)
+ ĈφCπ,L max

j=0,...,n
|hkτ2∂τ û

j+1|k+1,Th

+ Ĉφτ
2
(

max
s∈[t0,T ]

∥∂2
t v(s)∥Ω + max

s∈[t0,T ]
∥∂1

t gv(s)∥Ω
)

+ Cπ,Lτ

n∑
j=0

|hkx̂j+1/2|k+1,Th
+ ĈφCπ,Lτ

n∑
j=1

|hkτ2∂2
τ û

j+1|k+1,Th

)
.

This proves the statement.

Remark 3.15. If we use the midpoint evaluation g
n+1/2
h = gh(t

n+1/2) in (3.6)
instead of the average (3.7), we get an additional term τ2∥∂2

t g∥L1([t0,T ],L2(Ω)) in the
bound of Theorem 3.14. Nevertheless, this modification leads to the same order of
convergence.

3.3. Stability and convergence of local time-integration schemes. So
far, we proved our theoretical results for general filter functions Ψ. In this section,
we investigate the constants from Definition 3.3 for the special case of using leapfrog-
Chebychev polynomials and for a rational function from our previous work [5, 6].

We start with considering the locally-implicit method from [24], where, for all
z ∈ [0,∞), it holds

(3.40) Ψ(z) = (1 + z
4 )

−1 > 0, Θ(z) = 1, φ(z) = 0.

Thus we obtain βΨ = ∞ with the constants cΘ = 1 and Cφ = 0. Inserting these
constants into Definition 3.4 we get exactly the CFL conditions from the literature,
i.e., [14, Assumption 11.26] for Friedrichs’ systems or from [24] for the special case
of Maxwells equations. This indicates, that our new general theory does not require
stronger assumptions than for the known results.

Now we turn to the new local time-stepping methods. Here, motivated by [5], we
choose the filter function as the following polynomial of degree p

(3.41) Ψ(z)z = Pp(z)z = 2− 2

Tp(νp)
Tp

(
νp −

z

αp

)
, αp = 2

T ′
p (νp)

Tp(νp)
,

with a stabilization parameter νp > 1. With Tp, we denote the pth Chebychev poly-
nomial of first kind.

Theorem 3.16. Let Ψ be given by (3.41) for some p ∈ N and νp > 1. If we
choose

(3.42a) cΘ = 1
2

(
1− 1

Tp(νp)

)
∈ (0, 1

2 ),

then, (3.12) and (3.37) are satisfied for

(3.42b) β2
Ψ = αp(νp + 1) and Cφ = 1

4

(
1
cΘ

− 1
)
.
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Proof. Following [5, Lemmas 5.1, 5.4] we have

Ψ(z)z ≤ 4(1− cΘ), 0 < Ψ(z) ≤ 1, 0 ≤ z ≤ β2
Ψ

and hence

Θ(z) = Ψ(z)−1
(
1− z

4Ψ(z)
)
≥ 1− z

4Ψ(z) ≥ cΘ .

The formula for Cφ can be shown analogously to the proof of [5, Lemma 5.4].

Note that for p = 1 we have Ψ ≡ 1 and the scheme (3.6) is just the leapfrog method
(which is independent of the stabilization parameter νp). If we choose cΘ = 1 − ϑ2,
for ϑ2 ∈ (0, 1), we get β2

Ψ = 4(1− cΘ) = 4ϑ2.
We collect all relevant details on the different LTI schemes and their constants in

Table 1.
If, for p ≥ 2, we choose

(3.43) νp = 1 +
η2

2p2
, η > 0,

then cΘ defined in (3.42a) can be bounded independently of p, see [5, Lemma 5.5] for
a more in-depth view. In this case it holds

β2
Ψ = β2

p ≥ 2p ≥ 4.

Thus, the assumption of Lemma 3.7 on Ψ is satisfied for the leapfrog-Chebychev
polynomials (3.41).

Remark 3.17 (Implementation).
(a) It is important to note that one does not have to evaluate the polynomi-

als (3.41) of degree p − 1 in each step. Instead one calculates the action of
a vector u on Ψ(−τ2Am) in an efficient way by a three-term recurrence re-
lation, see [3, Algo. 4.2] for details. Here Am denotes the system matrix of
Lv,hχmLu,h one obtains after choosing an appropriate basis of the dG space
Vh , see [25].

(b) By sorting the degrees-of-freedom in an appropriate way [25, 31] one can see
that Ψ(−τ2Am) only acts on the few fine elements in Th,f plus two additional
layers.

4. Numerical examples. At last, we verify our findings numerically with three
examples. First we substantiate the error bounds of Theorem 3.14 and we study the
influence of stabilization of the leapfrog-Chebychev local time-stepping (LFC-LTS)
method. Afterwards, we investigate the efficiency of the LFC-LTS method compared
to the locally implicit (LI) and the original leapfrog scheme. The linear systems in the
LI method are solved with the conjugate gradient method without preconditioning
since it required only a few iterations (not more than four in our examples). Note that
it is essential to run the conjugate gradient method with the correct inner-product
induced by the mass matrix.

The codes to reproduce our results are available at
https://gitlab.kit.edu/malik.scheifinger/dg-lts-maxwell

The software is based on the FEM library deal.II [2] at version 9.5 and the Maxwell
toolbox TiMaxdG [4]. Since we use deal.II, all our examples are done with rectangular
mesh elements.

https://gitlab.kit.edu/malik.scheifinger/dg-lts-maxwell
https://www.dealii.org
https://gitlab.kit.edu/kit/ianm/ag-numerik/projects/dg-maxwell/timaxdg
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4.1. Linear Maxwells equations. Linear Maxwells equations in transverse-
electric (TE) mode, see [28, §2.3], are given by

ε∂tEx = ∂yHz − Jx, Ω× (0, T ),(4.1a)
ε∂tEy = −∂xHz − Jy, Ω× (0, T ),(4.1b)
µ∂tHz = ∂yEx − ∂xEy, Ω× (0, T ),(4.1c)

E(0) = E0, H(0) = H0, Ω,(4.1d)
E × n = 0, ∂Ω× (0, T ).(4.1e)

As computational spatial domain we choose Ω = (0, 1)2 and final time T = 1. We set
ε = µ = 1 and use initial values

E0
x(x, y, t) = cos(2πx) sin(2πy),(4.2a)

E0
y(x, y, t) = − sin(2πx) cos(2πy),(4.2b)

H0
z (x, y, t) = 4π cos(2πx) cos(2πy),(4.2c)

as well as right-hand sides

Jx(x, y, t) = −(1 + 8π2) cos(2πx) sin(2πy)et,(4.3a)

Jy(x, y, t) = (1 + 8π2) sin(2πx) cos(2πy)et.(4.3b)

The exact solution to (4.1) with (4.2) and (4.3) is given by a variant of the cavity
solution [24]

Ex(x, y, t) = cos(2πx) sin(2πy)et,(4.4a)

Ey(x, y, t) = − sin(2πx) cos(2πy)et,(4.4b)

Hz(x, y, t) = 4π cos(2πx) cos(2πy)et.(4.4c)

Thereby we can compute the exact L2-error of our scheme.

Figure 1: Locally refined mesh of the domain (0, 1)2.

We use the spatial mesh illustrated in Figure 1 in which we apply threefold refine-
ment in the blue central box. The mesh has been randomly perturbed to counteract
super convergence effects of the space discretization. Moreover, the dG degree is
choosen as k = 5.
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leapfrog p = 2 p = 4 p = 8 p = 9

Figure 2: Error of the numerical solution of (4.1) with initial data given by (4.4)
obtained by the leapfrog method (blue) and the local time-stepping method (3.6)
with filter (3.41), polynomial degrees p = 2 (orange), p = 4 (green), p = 8 (red),
p = 9 (purple), and stabilization (3.43) with η = 1. The space discretization is done
with dG degree k = 5 and a three times at the center locally refined mesh, see Figure 1.
The dash-dotted line depicts the maximal stable time stepsize of leapfrog method used
on the coarse mesh Th,lf .

4.2. Order of convergence. We apply the LTS method (3.6) with the LFC
filter (3.41) and the stabilization parameter (3.43) for η = 1 and various values of p.

In Figure 2, we illustrate the stability and convergence behavior with LFC poly-
nomials of degrees p = 2, 4, 8, 9. We observe second-order convergence in time until
the error reaches a plateau stemming from the spatial discretization. Moreover, we see
that an increase of p weakens the CFL condition significantly compared to the leapfrog
method (blue). Obviously one can not exceed the maximal stable time stepsize of the
leapfrog method on the coarse part Th,lf .

4.3. Necessity of stabilization. In this example we show that stabilization,
i.e., choosing η > 0, is indispensable in the LFC-LTS method, see also [5] for second-
order differential equations. For this we consider the following one-dimensional ex-
ample

∂tu = −∂xv, Ω× (0, T ),(4.5a)
∂tv = −∂xu, Ω× (0, T ),(4.5b)

u(0) = u0, v(0) = v0, Ω,(4.5c)
u = 0, ∂Ω× (0, T ),(4.5d)

on Ω = (0, 1). We choose the initial values such that

u(x, t) = sin(2πx) cos(2πt)

v(x, t) = − cos(2πx) sin(2πt).
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Figure 3: Error of the LFC-LTS method for the example in Section 4.3 with polyno-
mial degrees p = 3, 4, 5. Left: without stabilization (η = 0), right: with stabilization
(η = 0.1). The dash-dotted line depicts the maximal stable time-stepsize of the
leapfrog method on the coarse mesh Th,lf .

is the exact solution of (4.5).
We use a spatial grid where all cells have diameter hmax = 0.009975 except for

one cell in the middle of Ω with diameter hmin = 0.0025 ≈ hmax/4. In Figure 3 we
show the error of the LFC-LTS method with polynomial degrees p = 3, 4, 5 and stabi-
lization (3.43) with η = 0 and η = 0.1, on the left and the right picture, respectively.
As we can see, for η = 0, the method becomes unstable for certain time stepsizes
whereas the slightly stabilized method with η = 0.1 has no deviations.

4.4. Runtime comparison. Next, we compare the runtimes of the LFC-LTS
method, the LI method, and the leapfrog method at two different examples. We
revisit (4.1) on Ω = (0, 4)2 and use an equidistant spatial grid with h ≈ 0.022. For
the dG space we use the polynomial degree k = 2. Cells with center in the ball ∥x∥ ≤ r
with r ∈ {0.1, 0.5} are refined twice. The minimal mesh diameter on the whole mesh
is hmin ≈ 0.0055. Moreover we select the time-stepsize τ = 0.0022 which is small
enough to balance time and space discretization errors. For r = 0.1 and r = 0.5 the
L2 errors are 4 · 10−4 and 7.6 · 10−4, respectively for all three methods.

In Table 2, we summarize the runtimes of the leapfrog, LI, and LFC-LTS method
for the two values of r. For the leapfrog method we choose the maximum stable
stepsize τ = 6.8 · 10−4. For the LFC-LTS scheme, we choose the LFC polynomial
degree p = 4 and τ = 2.2 · 10−3.

For r = 0.1, the two local time-integration schemes LI and LFC-LTS clearly
outperform the leapfrog method, with the LFC-LTS method being more than twice
as fast. In the second example, where r = 0.5, the percentage of dofs in the refined
region is still relatively large, so that the computational cost for solving the linear
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r = 0.1 r = 0.5
total dofs 1 782 756 2 097 522
refined dofs 15 012 0.84% 353 430 16.85%
runtime leapfrog 71.1sec 100.0% 85.1sec 100.0%
runtime LI 53.7sec 75.5% 93.0sec 109.3%
runtime LFC-LTS 34.1sec 48.0% 57.5sec 67.6%

Table 2: Runtime comparison between the leapfrog, LI and LFC-LTS methods on two
different examples explained in Section 4.4.

system in the LI method is significant. Here, the leapfrog method is slighly faster
than the LI method but much slower than the LFC-LTS method.

Overall we see that the LFC-LTS method performs better than the leapfrog and
the LI method in both scenarios.

Acknowledgments. We thank Constantin Carle and Benjamin Dörich for in-
spiring discussions on local time-integration and its error analysis and helpful com-
ments on the manuscript.
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