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Abstract

Kerr frequency combs are optical signals consisting of a multitude of equally spaced excited
modes in frequency space. They are generated by converting a continuous-wave pump laser
within an optical microresonator. It has been observed that the interplay of Kerr nonlinearity
and dispersion in the microresonator can lead to a stable optical signal consisting of a periodic
sequence of highly localized ultra-short pulses, resulting in broad frequency spectrum. The dis-
covery that stable broadband frequency combs can be generated in microresonators has unlocked
a wide range of promising applications, particularly in optical communications, spectroscopy and
frequency metrology. In its simplest form, the physics in the microresonator is modeled by the
Lugiato-Lefever equation, a damped nonlinear Schrödinger equation with forcing. In this pa-
per we demonstrate that the Lugiato-Lefever equation indeed supports arbitrarily broad Kerr
frequency combs by proving the existence and stability of periodic solutions consisting of any
number of well-separated, strongly localized and highly nonlinear pulses on a single periodicity
interval. We realize these periodic multiple pulse solutions as concatenations of individual bright
cavity solitons by phrasing the problem as a reversible dynamical system and employing results
from homoclinic bifurcation theory. The spatial dynamics formulation enables us to harness
general results, based on Evans-function techniques and Lin’s method, to rigorously establish
diffusive spectral stability. This, in turn, yields nonlinear stability of the periodic multipulse
solutions against localized and subharmonic perturbations.

Keywords. Lugiato-Lefever equation, periodic multipulse solutions, spectral analysis, non-
linear stability, bifurcation theory
Mathematics Subject Classification (2020). Primary, 35B10, 35Q55, 35B35; Secondary,
35C08, 34C23

1 Introduction

In this paper we rigorously construct periodic multipulse solutions to the Lugiato-Lefever equation
and determine their spectral and nonlinear stability. The Lugiato-Lefever equation (LLE) is a
damped and forced nonlinear Schrödinger equation given by

iut = −duxx + ζu− |u|2u− iu+ if,(1.1)

∗Department of Mathematics, Karlsruhe Institute of Technology, Englerstraße 2, 76131 Karlsruhe, Germany;
lukas.bengel@kit.edu, bjoern.de-rijk@kit.edu
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where u : R × R → C is a complex-valued function, d ̸= 0 denotes the dispersion, ζ ∈ R is a
detuning parameter and f > 0 represents the forcing. The LLE was derived from Maxwell’s
equations in [30] to describe the optical field in a dissipative and nonlinear cavity filled with a
Kerr medium and subjected to a continuous-wave laser pump. As such it serves as a canonical
model, see [6] and further references therein, for Kerr frequency comb generation in continuous-
wave laser driven microresonators, which are microscopic ring- or disk-shaped cavities that confine
light by circulating it in a closed path and enhance the interaction of light through resonance.
Kerr frequency combs, which are optical signals whose frequency spectrum is carved into a series of
regularly spaced δ-functions, arise due to four-wave mixing mediated by the nonlinear Kerr effect
in the microresonator.

Over the past decades the generation of combs with broad frequency spectrum has become the
subject of intensive research, mainly due to the fact that such broad bandwidth frequency combs
have revolutionized the precision and accuracy with which different optical transition frequencies
can be measured, a discovery that was awarded with the Nobel prize in physics and has promising
applications to optical communications [32], broadband gas sensing [45], spectroscopy [7, 37], and
frequency metrology [48], to name but a few. The generation of broadband frequency combs in
high-quality microresonators has sparked significant interest [10, 13], mainly due to the potential
of chip-scale implementation, which facilitates the integration of frequency comb technology into
applications outside the laboratory. As high sensitivity to noise is undesired for practical imple-
mentation, attention must be given to the stability of these combs.

A breakthrough addressing the stability issue is the experimental realization [3,26] of frequency
combs comprised of a multitude of well-separated bright (cavity) solitons, which are remarkably
stable thanks to a double balance between anomalous dispersion and the Kerr nonlinearity (which
defines their shape) and between gain and dissipation (which defines their amplitude). The individ-
ual solitons correspond to ultrashort pulses whose frequency spectrum is broad and smooth, which,
together with their stability properties, makes soliton-based frequency combs highly attractive for
applications, see e.g. [32, 51] and further references therein.

In experiments [3, 26] the number of solitons constituting the generated frequency comb turns
out to be stochastic, but, once generated, the waveform is stable. That is, on a single periodicity
interval I ⊂ R, provided by the ring (or disk) shape of the microresonator, stable optical signals
of any number N ∈ N of ultrashort, well-separated, pulses can be generated. In simulations in [26]
of the microresonator system with parameters similar to the experimental setup a close-to-perfect
match was found between the numerical solution and the formal approximate solution

u(x) = αCW + α
N∑
i=1

ϕθ(x−Xi),(1.2)

corresponding to N ∈ N solitons superposed on a background αCW ∈ C. Here, x ∈ I resembles the
angular coordinate inside the resonator, α ∈ C \ {0} denotes the amplitude, Xi ∈ I represents the
position of the i-th soliton and

ϕθ(x) =
√

2ζ sech
(√

ζ x
)
eiθ(1.3)

is the well-known bright soliton with phase θ ∈ R solving the focusing nonlinear Schrödinger (NLS)
equation

iut = −uxx + ζu− |u|2u(1.4)
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with detuning parameter ζ > 0.
Subsequent bifurcation analyses [17, 20, 31, 36] based on numerical continuation indicate that

frequency combs consisting of a multitude of bright solitons on a periodicity interval can be found
in the LLE (1.1) in the anomalous dispersion regime d > 0. More precisely, these numerical
analyses suggest that, as a result of a snaking bifurcation, the LLE supports periodic pulse solutions
comprised of any number of solitons on a single periodicity interval.

1.1 Main result

In this paper we affirm the above experimental and numerical findings by proving that the LLE (1.1)
supports stable soliton-based frequency combs, whose leading-order profiles are of the form (1.2)
on a single periodicity interval. These periodic N -pulse solutions to (1.1) arise in the anomalous
dispersion regime d > 0 with small damping and forcing. In this regime stable 1-pulse solutions
to (1.1) on R were constructed in [1] by bifurcating from the rotated bright soliton solution (1.3) to
the focusing NLS equation (1.4). Thus, we regard the LLE as a perturbed focusing NLS equation

iut = −uxx + ζu− |u|2u+ εi(−u+ f)(1.5)

with parameters ζ, f > 0 and 0 < ε ≪ 1, where we have set the dispersion to 1 by rescaling space.
We note that, given a dispersion coefficient d > 0, solutions of (1.5) are in 1-to-1-correspondence
with solutions of the original formulation (1.1) of the LLE, see Remark 1.

Our main result may now be formulated as follows.

Theorem 1. Fix N ∈ N. Set n = ⌊N2 ⌋ and α0 = N mod 2 ∈ {0, 1}. Assume that ζ, f > 0 and
θ0 ∈ R obey 8ζ < π2f2, πf cos θ0 = 2

√
2ζ and sin θ0 > 0. Then, there exist constants C0, ε0 > 0

such that for all ε ∈ (0, ε0), k = (k1, . . . , kn) ∈ Nn and m ∈ N there exist distances T k1
1,ε, . . . , T

kn
n,ε > 0

and periods Lm
k > 0 satisfying

2
n∑

i=1

T ki
i,ε < Lm

k(1.6)

such that equation (1.5) admits a stationary smooth solution um,k,ε : R → C enjoying the following
properties:

(i) (Symmetry). The solution um,k,ε is even, i.e., it holds um,k,ε(x) = um,k,ε(−x) for all x ∈ R,
ε ∈ (0, ε0), k ∈ Nn and m ∈ N.

(ii) (Periodicity). The solution um,k,ε is Lm
k,ε-periodic for each ε ∈ (0, ε0), k ∈ Nn and m ∈ N.

For each fixed ε ∈ (0, ε0) and k ∈ Nn the sequence {Lm
k,ε}m of periods is monotonically

increasing and tends to ∞ as m → ∞.

(iii) (Approximation). On a single periodicity interval the solution um,k,ε is approximated by a
superposition of N rotated bright solitons of the form (1.3) as∣∣∣∣∣um,k,ε(x)− α0ϕθ0(x)−

n∑
i=1

(
ϕθ0

(
x− T k1

1,ε − . . .− T ki
i,ε

)
+ ϕθ0

(
x+ T k1

1,ε + . . .+ T ki
i,ε

))∣∣∣∣∣ ≤ C0ε

for x ∈ [−1
2L

m
k,ε,

1
2L

m
k,ε], ε ∈ (0, ε0), k ∈ Nn and m ∈ N.
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(iv) (Pulse separation). For all i = 1, . . . , n and ε ∈ (0, ε0) the sequence {T k
i,ε}k of pulse

distances is monotonically increasing with T k
i,ε → ∞ as k → ∞.

(v) (Asymptotic orbital stability against subharmonic perturbations). Let ε ∈ (0, ε0),
k ∈ Nn and m,M ∈ N. There exist constants C, δ, η > 0 such that for all v0 ∈ H1

per(0,MLm
k,ε)

with ∥v0∥H1
per(0,MLm

k,ε)
< δ there exist a constant γ ∈ R and a global (mild) solution

u ∈ C
(
[0,∞), H1

per(0,MLm
k,ε)
)

of (1.5) with initial condition u(0) = um,k,ε + v0 satisfying

|γ| ≤ C∥v0∥H1
per(0,MLm

k,ε)
, ∥u(·, t)− um,k,ε(·+ γ)∥H1

per(0,MLm
k,ε)

≤ Ce−ηt∥v0∥H1
per

for t ≥ 0.

(vi) (Diffusive stability against localized perturbations). Let ε ∈ (0, ε0) k ∈ Nn and m ∈ N.
There exist constants C, δ > 0 such that for all v0 ∈ L1(R)∩H4(R) with ∥v0∥L1∩H4 < δ there
exist functions

γ, v ∈ C
(
[0,∞), H4(R)

)
∩ C1

(
[0,∞), H2(R)

)
satisfying γ(0) = 0 and v(0) = v0 such that u = um,k,ε + v is the unique global classical
solution of (1.5) with u(0) = um,k,ε + v0. Moreover, the estimates

∥γ(t)∥L2 , ∥u(t)− um,k,ε∥L2 ≤ C(1 + t)−
1
4 ∥v0∥L1∩H4 ,

∥u(·, t)− um,k,ε(·+ γ(·, t))∥L2 ≤ C(1 + t)−
3
4 ∥v0∥L1∩H4

hold for t ≥ 0.

Theorem 1 shows that for any N ∈ N there exist even periodic stationary solutions to (1.5)
composed of a superposition of N bright solitons on a single periodicity interval. The period
length, as well as the distance between the individual solitons, can be chosen arbitrarily large
through the n + 1 degrees of freedom k1, . . . , kn and m in Theorem 1, where we set n = ⌊N2 ⌋.
More precisely, after fixing k1, . . . , ki ∈ N so that the distances T k1

1,ε, . . . , T
ki
i,ε between the first

i ∈ {1, . . . , n} solitons and their symmetric counterparts are set, there remain n+ 1− i degrees of
freedom, namely ki+1, . . . , kn,m ∈ N, which can still be adjusted to make the distances between
the remaining N − 2i solitons, as well as the period of the solution, arbitrarily large. In particular,
for fixed parameters ζ, f > 0, N ∈ N and ε > 0, Theorem 1 yields a (n + 1)-parameter family of
even periodic stationary N -pulse solutions of (1.5), whose pulse locations can be unequally spaced.
Since any fixed spatial translate of a solution of (1.5) is again a solution, we find that Theorem 1
provides in fact a (n+ 2)-parameter family of periodic stationary solutions to (1.5).

Upon rescaling the spatial variable x, the optical field u, and the detuning and forcing pa-
rameters ζ, f > 0 in (1.5) and upon reintroducing the dispersion parameter d > 0, we can adjust
the period length to match the (fixed) circumference of the microresonator and we can normalize
the damping coefficient, see Remark 1. In particular, one finds after rescaling that the periodic
N -pulse solutions in Theorem 1 correspond to frequency comb solutions of (1.1) in the regime of
large detuning, strong forcing and high anomalous dispersion. These frequency combs are com-
prised of ultrashort, well-separated, large-amplitude bright solitons and were thus numerically and
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experimentally observed in [3, 17, 20, 26, 31, 36]. In fact, the amplitude of the frequency comb so-
lution to (1.1) can be made arbitrarily large by taking ε > 0 sufficiently small in Theorem 1,
cf. Remark 1. On the other hand, by fixing ε > 0 and taking the parameters k1, . . . , kn and m
in Theorem 1 sufficiently large, the individual solitons constituting the frequency comb can be
arbitrarily localized, while maintaining the same amplitude. Therefore, their frequency spectrum
can be made arbitrarily broad.

The periodic multipulse solutions, or multipulse trains, established in Theorem 1, exhibit the
strongest stability properties attainable for (nonconstant) stationary periodic solutions of (1.5).
Since any spatial translate corresponds to a co-periodic perturbation, um,k,ε cannot be asymptot-
ically stable against subharmonic perturbations. However, Theorem 1 shows that, except for a
small spatial shift of the original periodic solution, the effect of subharmonic perturbations fades
exponentially quickly in time. In addition, by Floquet-Bloch theory, cf. [14, 22], the linearization
of (1.5) about um,k,ε possesses, when posed on L2(R), continuous spectrum, which, in the most
stable situation, touches the origin due to translational invariance in a single quadratic tangency.
It is well-known that such diffusively stable spectrum, cf. Definition 4, leads to algebraic decay
rates of perturbations, whose leading-order behavior is captured by a diffusively decaying spatio-
temporal phase modulation satisfying a viscous Hamilton-Jacobi equation, cf. [11,23,44,54]. That
is, the algebraic decay rates stated in Theorem 1 are the best achievable in the case of localized
perturbations.

In summary, Theorem 1 rigorously shows that the LLE admits for any number N ∈ N an
(⌊N2 ⌋+2)-parameter family of frequency combs. These combs are periodic solutions of (1.1) consist-
ing of N well-separated, generally unequally spaced bright solitons on a single periodicity interval.
The amplitude and frequency spectra of these solitions can be made arbitrarily large and broad,
respectively. Moreover, the frequency combs exhibit the best attainable stability properties. These
features are, as outlined above, of key importance for applications relying on frequency-comb tech-
nology. Moreover, as explained in §1.2 below, Theorem 1 is the first rigorous mathematical result
establishing periodic multiple pulse solutions of the LLE. In addition, the solutions in Theorem 1
are the first far-from-equilibrium periodic solutions of the LLE, whose stability against localized
perturbations and against subharmonic perturbations of any wavelength has been rigorously proven.

Remark 1. Let d > 0. If u(x, t) is a solution to (1.5), then the rescaled solution ũ(x, t) =
ε−1/2u((dε)−1/2x, ε−1t) solves

iũt = −dũxx + ζ̃ũ− |ũ|2ũ− iũ+ if̃

with ζ̃ = ε−1ζ and f̃ = ε−1/2f . Hence, we find that solutions of (1.5) are in 1-to-1-correspondence
with solutions of the original formulation (1.1) of the LLE with normalized damping coefficient
and dispersion coefficient d > 0. In particular, the solutions um,k,ε, established in Theorem 1,
correspond to stable pulse train solutions of (1.1) of period (dε)1/2Lm

k,ε, whose amplitude can be

made arbitrarily large by taking ε > 0 sufficiently small. Moreover, choosing d = 1/(εLm
k,ε)

1/2

yields 1-periodic multipulse solutions to (1.1), whose individual pulses become highly localized and
well-separated by taking k1, . . . , kn,m ∈ N sufficiently large.

1.2 Embedding in the mathematical literature

Despite the importance of frequency combs to applications, there are relatively few mathematically
rigorous studies of periodic solutions to the LLE. The first mathematical works [8, 9, 19, 33] focus
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on proving the existence of small amplitude periodic solutions of (1.1) by bifurcating from spatially
homogeneous steady states. These stationary periodic solutions are weakly nonlinear patterns, i.e.,
their leading-order profile is a (co)sine wave superposed on the homogeneous background state. In
particular, they do not exhibit broad frequency spectrum.

To date, far-from-equilibrium periodic solutions have, to the authors’ best knowledge, only
been established rigorously in [21, 31]. In [31] global branches of stationary periodic solutions and
bounds on their location in parameter space were obtained using global bifurcation theory. Yet,
the results in [31] do not provide any rigorous mathematical control on the profile or size of the
periodic solutions away from the branch of homogeneous background states.

In [21] stationary periodic solutions to (1.1) are constructed by bifurcating from the well-known
one-parameter family of real-valued periodic dnoidal solutions of the focusing NLS equation (1.4).
The homoclinic limit of the real dnoidal family is the bright soliton (1.3) with θ ∈ {0, π}. As
the dnoidal waves approach the homoclinic limit, their profile thus consists of one strongly lo-
calized bright soliton on each periodicity interval. Consequently, the bifurcating solutions to the
LLE resemble periodic 1-pulse solutions, whose individual pulses exhibit broad frequency spec-
trum. These bifurcating periodic 1-pulse solutions are however different from the ones constructed
in this paper, because they are unstable against localized and long-wavelength subharmonic per-
turbations, whereas the pulse trains in Theorem 1 are stable against localized perturbations and
against subharmonic perturbations of any wavelength. We refer to Remark 2 for further details.

As far as the authors are aware, the only class of periodic solutions to (1.1) whose stability
against localized perturbations and against subharmonic perturbations of any wavelength has been
rigorously established in the current literature [23, 46], are the small-amplitude, weakly nonlinear
Turing patterns constructed in [8, 9]. This follows by the fact that they are diffusively spectrally
stable, as proved in [8, 9]. On the other hand, spectral and nonlinear stability of small amplitude
periodic solutions of (1.1) against co-periodic perturbations is obtained in [33,34]. Finally, although
the periodic solutions to (1.1) bifurcating from the family of dnoidal NLS-solutions are unstable
against localized perturbations and large-wavelength subharmonic perturbations, their spectral and
nonlinear stability against co-periodic perturbations is proven in [21, 46], thereby confirming the
formal asymptotic analysis presented in [47].

Remark 2. The one-parameter family of real-valued periodic dnoidal solutions of the focusing NLS
equation (1.4) can be extended to a two-parameter family of stationary periodic solutions through
rotation. Indeed, if u is a stationary solution of (1.4), so is eiθu for any θ ∈ R. For each fixed
rotation angle θ ∈ R the homoclinic limit of the family is given by the rotated bright solition (1.3).

It is a classical result that any nonconstant real-valued stationary solution of period T > 0 of
the focusing NLS equation (1.4) is long-wavelength (or sideband) unstable [38], i.e., it is spectrally
unstable against MT -periodic perturbations for M ∈ N sufficiently large. In particular, any real-
valued dnoidal solution of (1.4) is long-wavelength unstable. Since the spectrum is unaffected by
the rotation u 7→ eiθu, it follows that the full two-parameter family of dnoidal waves is sideband
unstable.

The long-wavelength instability is inherited by periodic solutions of the LLE bifurcating from
any member of the two-parameter dnoidal family. The reason is as follows. The linearization
of (1.1) or (1.4) about a stationary T -periodic solution posed on L2

per(0,MT ) has compact resolvent
for any M ∈ N due to the compact embedding of its domain H2

per(0,MT ) into L2
per(0,MT ) by

the Rellich–Kondrachov theorem. Consequently, its spectrum consists of isolated eigenvalues of
finite multiplicity. It is well-known, cf. [28, Section 4.3.5], that a finite set of eigenvalues of finite
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multiplicity changes continuously under bounded perturbations. Therefore, stationary T -periodic
solutions to (1.1) bifurcating from any T -periodic dnoidal solution of (1.4) are long-wavelength
unstable. By Floquet-Bloch theory, cf. [14, 22], the spectrum of the linearization of (1.1) about a
T -periodic stationary wave posed on L2(R) arises by taking the union over M ∈ N of all spectra
of the linearizations of (1.1) about the wave posed on L2

per(0,MT ). Hence, any long-wavelength
unstable periodic stationary solution is also spectrally unstable against localized perturbations.
We conclude that the periodic stationary solutions of the LLE, which were established in [21] by
bifurcating from the dnoidal waves, are (spectrally) unstable against localized perturbations and
against MT -periodic perturbations for M ∈ N sufficiently large. This is confirmed by numerical
simulations in [47]. Interestingly, these simulations also indicate that, outside of a neighborhood of
the bifurcation point, the L2

per(0,MT )-spectrum might stabilize for given M ∈ N.
However, the homoclinic limits, given by the rotated bright solitons (1.3), of the two-parameter

dnoidal family are spectrally and orbitally stable [4, 52, 53] as solutions to the NLS equation (1.4)
against localized perturbations. It has been shown in [1] that the spectral stability is inherited by
some of the bifurcating soliton solutions of (1.5), see also Theorem 2. In this paper, we exploit the
spectral stability of the soliton solutions to construct periodic multipulse solutions, which are spec-
trally and nonlinearly stable against localized perturbations and against subharmonic perturbations
of any wavelength.

1.3 Dynamical systems approach

The results presented in this paper are the outcome of a dynamical systems approach to analyze
the existence and spectral stability problems for stationary solutions to (1.5). These problems,
being independent of time, may be written as first-order dynamical systems of ordinary differential
equations in the spatial variable x. Due to the reflection symmetry x 7→ −x present in (1.5), these
dynamical systems admit a reversible symmetry.

Our basic ingredients for the construction of periodic multipulse solution to (1.5) are the 1-
pulse solutions bifurcating from the one-parameter family of rotated bright NLS solitons (1.3).
These primary 1-pulse solutions to (1.5) were rigorously established in [1,16,18] and their spectral
and nonlinear stability was analyzed in [1] using Krein index counting and analytic perturbation
theory. Upon formulating the existence problem as a reversible dynamical system, the 1-pulses
correspond to symmetric nondegenerate homoclinics to a saddle-focus equilibrium. Homoclinic
bifurcations results [5,25,41] for reversible dynamical systems, which rely on Shil’nikov analysis or
a Lyapunov-Schmidt reduction method called Lin’s method [29, 39], allow us to concatenate any
number N ∈ N of these nondegenerate homoclinics, yielding so-called N -homoclinics, which are
again nondegenerate and symmetric. The N -homoclinics correspond to even stationary multiple
pulse solutions of (1.5) comprised of N well-separated pulses, which can, in turn, be approximated
by the rotated bright NLS solitons (1.3). The spectral stability of these N -pulse solutions follows
by combining results from [2,40,41] with a-priori bounds on the spectrum. More specifically, in [40]
general eigenvalue problems arising in the spectral stability analysis of N -pulses bifurcating from a
formal concatenation of N primary pulses are studied using Lin’s method, providing leading-order
control over the N small eigenvalues bifurcating from the translational eigenvalue residing at the
origin. An application of the theory of [40] to reversible systems can be found in [41], see also [42].
On the other hand, the Evans-function analysis in [2] yields that the absence of eigenvalues in
compact regions of the spectral plane associated with the primary 1-pulse solutions is inherited by
the bifurcating N -pulse solutions. We note that the spectral stability of the multipulse solutions
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implies their asymptotic orbital stability through standard arguments relying on high-frequency
resolvent bounds established in [1]. We emphasize that these rigorous existence and stability results
of multiple pulse solutions to the LLE are novel and interesting in their own right. We refer to §2.3
and §3.2 for the precise statements.

Having established a nondegenerate N -homoclinic in the dynamical systems formulation of
the existence problem, we employ the homoclinic bifurcation results in [50], which again rely on
Lin’s method, to find nearby periodic orbits, which have large spatial periods T > 0 and are
reversibly symmetric. The bifurcating periodic orbits correspond to a family of periodic N -pulse
solutions to (1.5). We study the spectral stability of these T -periodic pulse solutions against
localized perturbations and subharmonic perturbations using [2, 15, 43]. There are M eigenvalues
of the linearization of (1.5) about the multipulse train posed on L2

per(0,MT ) bifurcating from each
isolated eigenvalue associated with the underlying multipulse solution, cf. [14]. Since there is an
eigenvalue associated with the underlying multipulse solution at the origin due to translational
invariance, the multipulse train can be spectrally unstable even in the case of spectral stability of
the underlying multipulse. In the case of localized perturbations each eigenvalue associated with
the underlying multipulse solution yields a bifurcating spectral curve consisting of the union of
eigenvalues of the linearizations posed on L2

per(0,MT ) for each M ∈ N. Leading-order control
on the bifurcating eigenvalues in the case of subharmonic perturbations and on the bifurcating
spectral curve in the case of localized perturbations close to the origin is provided by results in [43],
which rely on Lin’s method and Floquet-Bloch theory. On the other hand, the Evans function
analysis in [2, 15] yield that the absence of eigenvalues in compact regions of the spectral plane
associated with the underlying multipulse solution is inherited by the bifurcating multipulse trains.
Combining the latter with spectral a-priori bounds then leads to the desired diffusive spectral
stability result for the periodic multipulse solution. Finally, diffusive spectral stability implies
nonlinear stability against localized perturbations and against subharmonic perturbations of any
wavelength, cf. [23, 24,46].

1.4 Outline of paper

The remainder of this paper is structured as follows. In §2 we collect previous results on the
existence and spectral stability of the 1-pulse solutions to the LLE bifurcating from the rotated
bright NLS-solitons. Moreover, we formulate the existence problem as a dynamical system and
establish multiple and periodic pulse solutions. The spectral and nonlinear stability analysis of the
multiple and periodic pulse solutions, as well as the proof of our main result, Theorem 1, can be
found in §3.

Acknowledgments. This project is funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) – Project-ID 258734477 – SFB 1173

2 Soliton-based pulse solutions

In this section we establish multiple and periodic pulse solutions to (1.5). As outlined in §1.3, the
fundamental building blocks of these pulse solutions are the stationary 1-pulse solutions of (1.5),
constructed in [1, 16, 18] by bifurcating from the 1-parameter family of rotated bright NLS soli-
tions (1.3). After we have formulated the existence problem as a dynamical system, we collect
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the relevant properties of these primary 1-pulse solutions from [1] and show that they correspond
to nondegenerate symmetric homoclinics in the dynamical system. Then, we employ homoclinic
bifurcation results from [39,41,50] to obtain the desired multiple and periodic pulse solutions.

2.1 Spatial dynamics formulation

Multiplying (1.5) by −i and decomposing u into its real and imaginary part yields the real two-
component system

(2.1) ut = J(−uxx + ζu− |u|2u) + ε(−u+ F),

written in vector notation u = (Re(u), Im(u))⊤, where we denote

J =

(
0 1
−1 0

)
, F =

(
f
0

)
and where |u| =

√
u2
1 + u2

2 is the usual Euclidean norm. The advantage of the fomulation (2.1)
over (1.5) is that the nonlinearity is now a (Fréchet) differentiable function of the vector u. We
note that any real-valued solution u = (u1,u2)

⊤ to (2.1) gives rise to a complex-valued solution
to (1.5) by setting u = u1 + iu2.

Stationary solutions of (2.1) solve the second-order system

J(−uxx + ζu− (u2
1 + u2

2)u) + ε(−u+ F) = 0(2.2)

of ordinary differential equations. By introducing the variable

U = (u1,u2,u
′
1,u

′
2)

⊤

the existence problem (2.2) can be written as a dynamical system on R4 given by

U ′ = F (U ; ε),(2.3)

where F : R4 × R → R4 is the smooth nonlinear function defined by

F (U ; ε) =


U3

U4

ζU1 + εU2 − (U2
1 + U2

2 )U1

ζU2 − εU1 − (U2
1 + U2

2 )U2 + εf

 .

The reflection symmetry x 7→ −x of (1.5) yields that the first-order system (2.3) of ordinary
differential equations is reversible for the linear involution

R =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ∈ R4×4, R2 = R.

That is, the relation RF (U ; ε) = −F (RU ; ε) holds true for all U ∈ R4 and ε ∈ R. A solution U
of (2.3) is called symmetric if we have RU(−x) = U(x) for all x ∈ R. We note that symmetric
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solutions of (2.3) give rise to even stationary solutions of (1.5). Since F is smooth, we find that
all solutions of (2.3) are smooth by standard local existence theory for ODEs. Consequently, all
stationary bounded solutions of (2.1) are smooth.

Taking advantage of the differentiability of the nonlinearity in (2.1), we can linearize system (2.1)
about a bounded stationary solution u = (u1,u2)

⊤ : R → R2. The linearization of (2.1) about u
equals L(u) − ε, where L(u),L(u) : H2(R) ⊂ L2(R) → L2(R) are the closed and densely defined
operators given by

L(u) = −∂2
x + ζ −

(
3u2

1 + u2
2 2u1u2

2u1u2 u2
1 + 3u2

2

)
, L(u) = JL(u).

2.2 Primary 1-pulse solutions

Stationary 1-pulse solutions of (2.1) were constructed in [1, 16,18] by bifurcating from the rotated
bright soliton solution (1.3) of the NLS equation (1.4), where the rotation parameter θ ∈ R has to
satisfy the bifurcation equation πf cos θ = 2

√
2ζ. In the following we collect the relevant details

from [1] on the existence and spectral stability of these 1-pulse solutions, which will serve as
building blocks for the upcoming construction of stationary multipulse solutions to (2.1). In order
to formulate the result from [1], we first state the definition of spectral stability for stationary pulse
solutions of (2.1), as well as the definition of spectral instability.

Definition 1. Let u∞ ∈ R2 and let u : R → R2 be a smooth stationary solution to (2.1) such that
u(x) converges to u∞ as x → ±∞. The stationary pulse solution u to (2.1) is spectrally stable if
there exists τ > 0 such that

σ(L(u)− ε) ⊂ {λ ∈ C : Re(λ) ≤ −τ} ∪ {0}

and 0 is an algebraically simple eigenvalue of L(u)− ε.

Definition 2. A smooth stationary bounded solution u : R → R2 to (2.1) is spectrally unstable if
there exists λ ∈ σ(L(u)− ε) with Re(λ) > 0.

It has been proved in [1, Theorem 3] that spectral stability yields nonlinear stability of pulse
solutions to (2.1) against L2-localized perturbations, see also Theorem 6. We are now ready to
summarize the existence and spectral stability results on 1-pulse solutions from [1].

Theorem 2 ([1, Theorem 1,2]). Assume that ζ, f > 0 and θ0 ∈ R obey f2π2 > 8ζ, πf cos θ0 = 2
√
2ζ

and sin θ0 ̸= 0. Then, there exist C0, ε0 > 0 such that for all ε ∈ (0, ε0) there exist an asymptotic
state u∞,ε ∈ R2 and an even smooth solution uε : R → R2 of (2.2) satisfying∥∥uε − ϕθ0

∥∥
L∞ , |u∞,ε| ≤ C0ε, uε − u∞,ε ∈ H2(R),(2.4)

where we denote ϕθ = ϕ0(cos θ, sin θ)
⊤ and ϕ0 is the bright soliton given by (1.3). The spectral

stability of the solution uε depends on the rotational angle θ0 as follows.

(i) If sin θ0 > 0, then uε is spectrally stable as a stationary pulse solution to (2.1).

(ii) If sin θ0 < 0, then uε is spectrally unstable as a stationary solution to (2.1).

In both cases ker(L(uε)− ε) is spanned by u′
ε.

10



Figure 1: Periodic approximations of the primary 1-pulse solutions established in Theorem 2 (see
also Theorem 4) with parameters ζ = 1, f = 2. The solutions were computed with the MATLAB
package pde2path [49]. The top row shows a stable 1-pulse bifurcating with sin θ0 > 0, its spectrum
against co-periodic perturbations, and the corresponding frequency comb obtained by plotting
log |û(k)| against the Fourier frequency variable k. The bottom row depicts an unstable 1-pulse
bifurcating with sin θ0 < 0, the associated spectrum, and its frequency comb.

We prove that the 1-pulse solutions, established in Theorem 2, correspond to nondegenerate
homoclinics connecting to a saddle-focus equilibrium in the dynamical system (2.3). The definition
of nondegeneracy, cf. [50], reads as follows.

Definition 3. A homoclinic solution U of (2.3) is called nondegenerate if all bounded solutions
U : R → R4 to the variational problem

U ′ = ∂UF (U(x); ε)U(2.5)

are given by scalar multiples of U ′.

We exploit the spectral properties of the linearization of (2.1) about the primary 1-pulse to
show nondegeneracy of the corresponding homoclinic in (2.3). In particular, the nondegeneracy
follows from the fact that 0 is a geometrically simple eigenvalue of the linearization.

Lemma 1. Let u∞ ∈ R2 and let u : R → R2 be a smooth solution of (2.2) such that u(x) → u∞
and u′(x) → 0 as x → ±∞. Assume that 0 is a geometrically simple eigenvalue of L(u) − ε with
associated eigenfunction u′. Then, the corresponding homoclinic solution U : R → R4 to (2.3) given
by U = (u,u′)⊤ is nondegenerate if its asymptotic state U∞ = (u∞, 0)⊤ is hyperbolic.

Proof. First, we note that, since the variational equation (2.5) has smooth coefficients, all of its
solutions are smooth. Moreover, if U = (U1, U2, U3, U4)

⊤ is an L2-localized solution of (2.5), then
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it follows, by expressing derivatives through the equation, that U ′ and U ′′ are also L2-localized.
Hence, we infer that u = (U1, U2)

⊤ ∈ H2(R) must lie in ker(L(u)− ε) = span{u′}. Consequently,
U is a scalar multiple of U ′, implying that U is nondegenerate. Thus, in order to prove the result,
it suffices to show that all bounded solutions of (2.5) are L2-localized. This will be achieved with
the aid of exponential dichotomies. We first look at the limiting system

U ′ = ∂UF (U∞; ε)U.(2.6)

Since the matrix ∂UF (U∞; ε) is hyperbolic by assumption, system (2.6) admits an exponential
dichotomy on R. Combining the latter with the fact that the coefficient matrix ∂UF (U(x); ε)
of (2.5) converges to ∂UF (U∞; ε) as x → ±∞, we infer that system (2.5) possesses exponential
dichotomies on both half-lines (−∞, 0] and [0,∞) by [35, Lemma 3.4]. Therefore, every bounded
solution of (2.5) is exponentially localized and, thus, lies in L2(R).

With the aid of Lemma 1, we establish that the primary 1-pulse solutions in Theorem 2 corre-
spond to nondegenerate homoclinics in (2.3) connecting to a saddle-focus equilibrium.

Proposition 1. Let uε be a stationary 1-pulse solution, established in Theorem 2. Then, provided
ε > 0 is sufficiently small,

U ε = (u1,ε,u2,ε,u
′
1,ε,u

′
2,ε)

⊤

is a nondegenerate homoclinic solution to (2.3), whose asymptotic state U∞,ε = lim
x→±∞

U ε(x) is a
saddle-focus equilibrium, i.e., ∂UF (U∞,ε; ε) has the four eigenvalues ±α± βi with α, β > 0.

Proof. It holds F (0; 0) = 0 and det(∂UF (0; 0)) = ζ2 > 0. So, with the aid of the implicit function
theorem, we find a unique equilibrium U∞,ε ∈ R4 of (2.3) converging to 0 ∈ R4 as ε → 0. On
the other hand, since uε − u∞,ε lies in H2(R) by Theorem 2 and functions in H1(R), being square
integrable and uniformly continuous, converge to 0 as x → ±∞, it follows that U ε is a homoclinic
solution of (2.3) connecting to the equilibrium (u∞,ε, 0)

⊤ ∈ R4. Since the equilibrium (u∞,ε, 0)
⊤

converges to 0 as ε → 0 by Theorem 2, it must hold U∞,ε = (u∞,ε, 0)
⊤. One readily observes that

the matrix ∂UF (U∞,ε; ε) ∈ R4×4 possesses four eigenvalues ±ν±,ε ∈ C satisfying

ν2±,ε = ζ − 2|u∞,ε|2 ± i
√

ε2 − |u∞,ε|4.

Since we have |u∞,ε| = O(ε) by Theorem 2, these four eigenvalues are, provided ε > 0 is sufficiently
small, of the form ±α ± iβ with α, β > 0, implying that U∞,ε is a saddle focus. Finally, using
that U∞,ε is hyperbolic and 0 is a simple eigenvalue of L(uε)− ε by Theorem 2, we infer that the
homoclinic U ε is nondegenerate.

2.3 N-pulse solutions

In this subsection we establish stationary multipulse solutions to (2.1) composed of any number
N ∈ N of well-separated primary 1-pulses, which were obtained in Theorem 2. We allow for
superpositions of 1-pulses bifurcating from bright solitons with different phase rotations. The
constructed N -pulses are even and the individual distances between the first ⌊N2 ⌋+1 pulses can be
chosen arbitrarily large, independently of each other. The linearization of (2.1) about the N -pulses
possesses N eigenvalues, which converge to 0 as the distances between the individual pulses tend to
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∞. These N small eigenvalues are associated with the translational eigenvalues of the N individual
1-pulses constituting the multipulse. We employ [41, Theorem 3.6] and [40, Theorem 1], see also [39,
Section 3], to establish for any number ℓ ∈ {0, . . . , N −1} the existence of an N -pulse solution such
that there are precisely ℓ stable eigenvalues and N−1−ℓ unstable eigenvalues amongst the N small
eigenvalues. The N -th eigenvalue resides at the origin and is algebraically simple, implying that the
associated N -homoclinic in the dynamical system (2.3) is nondegenerate, cf. Lemma 1. In summary,
given a sequence of ⌈N2 ⌉ primary 1-pulses, an application of [39, Theorem 1] and [41, Theorem 3.6]
yield an (n+1)-parameter family of associated even N -pulses, where the first n = ⌊N2 ⌋ parameters
regulate the distances between the first n + 1 pulses and the last parameter corresponds to the
number of stable small eigenvalues.

Theorem 3. Let N ∈ N and ℓ ∈ {0, . . . , N − 1}. Set n = ⌊N2 ⌋ and α0 = N mod 2 ∈ {0, 1}. Let
u1, . . . ,un+α0

be a sequence of stationary 1-pulse solutions, established in Theorem 2 and converging
to the asymptotic end state u∞ ∈ R2 as x → ±∞. Then, there exist constants δ0, C0 > 0 such
that for each k = (k1, . . . , kn) ∈ Nn there exist distances T k1

1,ℓ, . . . , T
kn
n,ℓ > 0 such that (2.2) admits

an even smooth solution uk,ℓ : R → R2 satisfying∣∣∣∣∣uk,ℓ(x)− u∞ − α0

(
un+α0

(x)− u∞
)
−

n∑
i=1

(
ui

(
x− T k1

1,ℓ − . . .− T ki
i,ℓ

)
+ui

(
x+ T k1

1,ℓ + . . .+ T ki
i,ℓ

)
− 2u∞

)∣∣∣∣∣ ≤ C0

min{k1, . . . , kn}
,

(2.7)

for x ∈ R. The spectrum of L(uk,ℓ) − ε in the ball Bδ0(0) consists of N eigenvalues of which ℓ
have negative real part and N − 1 − ℓ have positive real part (all counted with algebraic multiplic-
ities). Moreover, 0 is an algebraically simple eigenvalue. In addition, Uk,ℓ = (uk,ℓ,u

′
k,ℓ)

⊤ is a
nondegenerate homoclinic solution to (2.3), whose asymptotic end state U∞ = lim

x→±∞
Uk,ℓ(x) is a

saddle-focus equilibrium. Finally, the sequence {T k
i,ℓ}k of pulse distances is monotonically increasing

with T k
i,ℓ → ∞ as k → ∞ for i = 1, . . . , n.

Proof. The proof follows from the homoclinic bifurcation results, [40, Theorem 1] and [41, Theo-
rem 3.6], after verifying that all necessary hypotheses are satisfied. Specifically, Theorem 2 and
Proposition 1 yield that 0 is an algebraically simple eigenvalue of the linearization L(uj) − ε and
Uj = (uj ,u

′
j)

⊤ is a symmetric homoclinic solution to (2.3) connecting to the saddle-focus equi-
librium U∞ = (u∞, 0)⊤ for j = 1, . . . , n + α0. Furthermore, the asymptotic behavior of Uj , U

′
j ,

and all bounded solutions to the adjoint problem Ψ′ = −∂UF (Uj ; ε)
∗Ψ is fully described by the

eigenvalues of the matrix ∂UF (U∞; ε) ∈ R4×4, which are of the form ±α± iβ with α, β > 0 as U∞
is a saddle focus. We deduce that the (un)stable manifold of the equilibrium U∞ in system (2.3) do
not admit any strong (un)stable submanifolds by dimension counting. Hence, the stable and unsta-
ble manifolds along the homoclinics Uj are not in an orbit-flip configuration, cf. [27, Section 2.1].
By an analogous dimension counting argument we deduce that the (un)stable manifolds along the
homoclinics Uj are not in an inclination-flip configuration. We thus conclude that [40, Theorem 1]
and [41, Theorem 3.6] apply, which establish the result, where we point out that the nondegeneracy
of Uk,ℓ follows from Lemma 1.

We emphasize that taking ℓ ̸= N −1 in Theorem 3 results in spectrally unstable N -pulses, even
if all primary 1-pulses u1, . . . ,un+α0

are spectrally stable.
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Figure 2: The figure shows periodic approximations of 2- and 3-pulses, which were established in
Theorem 3, see also Theorem 4, computed with pde2path [49]. The parameters are ζ = 1 and
f = 2. Continuation was performed in the small parameter ε starting from superpositions of bright
NLS-solitons.

Remark 3. In [40] Lin’s method is employed to determine leading-order expressions of the N small
eigenvalues bifurcating from 0. The leading-order expressions in [40, Theorem 2] imply that there
exist constants C, η > 0 such that that any of the N eigenvalues λ ∈ Bδ0(0) in Theorem 3 obeys the
estimate |λ| ≤ C exp(−ηmin{T k1

1,ℓ, . . . , T
kn
n,ℓ}). Particularly, any potential instabilities arising from

the eigenvalues near zero can be interpreted as long-time instabilities, i.e. instabilities that are only
observed on time scales which are exponentially long in terms of the pulse distances.

2.4 Periodic N-pulse solutions

We obtain periodic multipulse solutions to (2.2) by employing the dynamical systems formula-
tion (2.3). Specifically, we use that any nondegenerate symmetric homoclinic in a reversible dy-
namical system connecting to a saddle-focus equilibrium is accompanied by a 1-parameter family
of symmetric periodic orbits parameterized by the period T . The T -periodic orbits converge uni-
formly to the homoclinic on a single periodicity interval as T → ∞. This result, which was obtained
in [50, Theorem 5], follows from an application of Lin’s method.

Theorem 4. Let U : R → R4 be a nondegenerate symmetric solution of (2.3) homoclinic to a
saddle-focus equilibrium U∞ ∈ R4, as established in Theorem 2 or Theorem 3. Then, there exists
T0 > 0 such that for every T ≥ T0 there exists a smooth T -periodic symmetric solution UT : R → R4
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to (2.3) satisfying

lim
T→∞

sup

x∈
[
−T

2 ,
T
2

] |UT (x)− U(x)| = 0.(2.8)

Proof. The proof follows immediately from [50, Theorem 5] upon noting that nondegenerate ho-
moclinic solutions are elementary by [50, page 302].

Combining Theorem 4 with Theorem 3 and Proposition 1 we readily establish the existence of
periodic N -pulse solutions to (2.2) for any N ∈ N.

3 Stability analysis

In this section, we establish the spectral and nonlinear stability of the multiple and periodic pulse
solutions to (2.1), which were obtained in Theorems 3 and 4. As outlined in §1.3, the spectral
stability analysis of these pulse solutions hinges on a-priori bounds on the spectrum, a detailed
assessment of the spectrum in a neighborhood of the origin relying on [41,43], and Evans-function
arguments from [2] to control the spectrum in a compact set away from the origin. After having
obtained spectral stability, nonlinear stability of the multiple and periodic pulse solutions follows
by invoking results from [1] and [23,46], respectively.

3.1 Spectral a-priori bounds

Given a constant ρ > 0 and a smooth stationary solution u of (2.1) obeying ∥u∥L∞ ≤ ρ, we establish
a-priori bounds on the spectrum of the linearization L(u)− ε of (2.1) about u. The bounds ensure
that the spectrum of L(u) − ε in the closed right-half plane is confined to a compact set, whose
boundary depends on ρ and the detuning parameter ζ only.

Lemma 2. Fix ρ > 0 and ζ ∈ R. There exist constants η1, η2 > 0 such that for all u ∈ L∞(R)
with ∥u∥L∞ ≤ ρ the set

Ω = {λ ∈ C : |Re(λ)| ≥ η1} ∪ {λ ∈ C : | Im(λ)| ≥ η2,Re(λ) ̸= 0}

belongs to the resolvent set of L(u), i.e., we have σ(L(u)) ∩ Ω = ∅.

Proof. The densely defined skew-adjoint operator −J∂2
x : H

2(R) ⊂ L2(R) → L2(R) generates a
unitary group on the Hilbert space L2(R) by Stone’s theorem, see [12, Theorem II.3.24]. In partic-
ular, [12, Theorem I.1.10] yields the resolvent bound∥∥∥(−J∂2

x − λ
)−1
∥∥∥
L2→L2

≤ 1

|Re(λ)|
(3.1)

for λ ∈ C with |Re(λ)| > 0. The residual L(u) + J∂2
x can be bounded as∥∥(L(u) + J∂2

x

)
u
∥∥
L2 ≤

(
|ζ|+ 4∥u∥2L∞

)
∥u∥L2 ≤ C1∥u∥L2 ,

for all u ∈ H2(R), where we set C1 = |ζ| + 4ρ2. By estimate (3.1) there exists a constant η1 > 0,
depending on ρ and ζ only, such that for λ ∈ C with |Re(λ)| ≥ η1 we have

C1

∥∥(−J∂2
x − λ)−1

∥∥
L2→L2 < 1.

15



Therefore, L(u) − λ = −J∂2
x − λ +

(
L(u) + J∂2

x

)
is by [28, Theorem IV.1.16] bounded invertible

for each λ ∈ C with |Re(λ)| ≥ η1. This yields

{λ ∈ C : |Re(λ)| ≥ η1} ∩ σ(L(u)) = ∅.

Next, let λ ∈ C and w ∈ L2(R). Consider the resolvent problem

(L(u)− λ)u = w.(3.2)

We show that there exists η2 > 0, depending on ρ and ζ only, such that (3.2) has a unique solution
u ∈ H2(R) provided | Im(λ)| ≥ η2 and Re(λ) ̸= 0. To this end, we observe that the resolvent
problem (3.2) has a unique solution u ∈ H2(R) if and only if the conjugate problem

(L̃(u)− λ)ũ = w̃(3.3)

posses a unique solution ũ ∈ H2(R), where we denote L̃(u) = J̃ L̃(u) with J̃ = S−1JS, L̃(u) =
S−1L(u)S, ũ = S−1u, w̃ = S−1w and

S =
1

2

(
1 1
−i i

)
∈ C2×2.

We note that conjugation with the matrix S corresponds to a coordinate transform transferring
the formulation (2.1) of (1.5) as a system in (Re(u), Im(u))⊤ into its formulation as a system in
(u, u)⊤. One readily computes

J̃ =

(
−i 0
0 i

)
, L̃(u) =

(
−∂2

x + ζ − 2|ũ|2 −ũ2

−ũ
2 −∂2

x + ζ − 2|ũ|2

)
,

where we denote ũ = u1 + iu2. We define the operators A : H2(R) ⊂ L2(R) → L2(R) and
B : L2(R) → L2(R) by Au = −u′′ + (ζ − 2|ũ|2)u and Bu = −ũ2u, respectively. Then, using
integration by parts we infer that the self-adjoint operator A can be bounded from below as

⟨Au, u⟩L2 ≥ ∥u′∥2L2 + (ζ − 2∥ũ∥2L∞)∥u∥2L2 ≥ (ζ − 2ρ2)∥u∥2L2

for all u ∈ H2(R). We note that the lower bound of A depends on ρ and ζ only. Clearly, B is a
bounded operator with ∥B∥L2→L2 ≤ ρ2. Employing [1, Theorem 4], we find constants C2, η2 > 0,
depending on ρ and ζ only, such that for every w̃ ∈ L2(R) the problem (3.3) has a unique solution
ũ ∈ H2(R) with

∥ũ∥L2 ≤ C2
∥w̃∥L2

|Re(λ)|
,

provided that Re(λ) ̸= 0 and | Im(λ)| ≥ η2. Thus, we have proved

{λ ∈ C : | Im(λ)| ≥ η2,Re(λ) ̸= 0} ∩ σ(L(u)) = ∅

and the claim follows.
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3.2 Stability of N-pulse solutions

We determine the spectral stability of the N -pulse solutions established in Theorem 3. If one of
the primary 1-pulse solutions constituting the N -pulse is spectrally unstable, spectral instability of
the N -pulse follows from [2]. On the other hand, if the N -pulse is comprised of N spectrally stable
1-pulses, then we employ Lemma 2 and [2, Lemma 3.3], to confine the spectral stability problem
to a small ball Bδ0(0) centered at the origin. Spectral stability is then decided by the N small
eigenvalues in Bδ0(0), whose position with respect to the imaginary axis is described by Theorem 3.
All in all, we arrive at the following result.

Theorem 5. Let N ∈ N and ℓ ∈ {0, . . . , N − 1}. Set n = ⌊N2 ⌋ and α0 = N mod 2 ∈ {0, 1}. Let
u1, . . . ,un+α0

be a sequence of stationary 1-pulse solutions to (2.1), established in Theorem 2. For
each k ∈ Nn, we denote by uk,ℓ the associated N -pulse solutions to (2.1), established in Theorem 3.

The following assertions hold.

(i) If u1, . . . ,un+α0
are spectrally stable solutions of (2.1), then there exists a constant k0 ∈

N such that, whenever k = (k1, . . . , kn) ∈ Nn satisfies min{k1, . . . , kn} ≥ k0, the N -pulse
solution uk,ℓ of (2.1) is spectrally stable if ℓ = N − 1 and spectrally unstable if ℓ ̸= N − 1.

(ii) Assume that there exists i ∈ {1, . . . , n + α0} such that ui is a spectrally unstable solution
of (2.1), then there exists a constant k0 ∈ N such that, whenever k = (k1, . . . , kn) ∈ Nn

satisfies min{k1, . . . , kn} ≥ k0, the N -pulse solution uk,ℓ of (2.1) is spectrally unstable.

Proof. We start with the proof of the first assertion. Let δ0 > 0 be as in Theorem 3. Using the
bound (2.7) in Theorem 3 and applying Lemma 2, we find k-independent constants η1, η2 > 0 such
that

σ(L(uk,ℓ)− ε) ∩ {λ ∈ C : Re(λ) ≥ − ε
2} ⊂ {λ ∈ C : − ε

2 ≤ Re(λ) ≤ η1, | Im(λ)| ≤ η2}.

On the other hand, by the spectral stability of ui, there exists a k-independent constant τ > 0 such
that

σ(L(ui)− ε) ∩ {λ ∈ C : Re(λ) > −τ} = {0}

for i = 1, . . . , n + α0. Hence, [2, Lemma 3.3] yields a constant k0 ∈ N such that, provided k =
(k1, . . . , kn) ∈ Nn satisfies min{k1, . . . , kn} ≥ k0, the compact set

{λ ∈ C : −τ ≤ Re(λ) ≤ η1, | Im(λ)| ≤ η2} \Bδ0(0)

lies in the resolvent set of L(uk,ℓ) − ε. We conclude that all spectrum of L(uk,ℓ) − ε in the half
plane {λ ∈ C : Re(λ) ≥ −τ} must be confined to the ball Bδ0(0). The spectrum of L(uk,ℓ) − ε
in the ball Bδ0(0) consists of precisely ℓ eigenvalues of negative real part, N − 1 − ℓ eigenvalues
of positive real part and one algebraically simple eigenvalue 0 by Theorem 3 (all counted with
algebraic multiplicities). This yields the first assertion.

For the second assertion, we observe that if ui is spectrally unstable, then there exists λ0 ∈
σ(L(ui)− ε) with Re(λ0) > 0. By [1, Lemma 4] the essential spectrum of L(uj)− ε lies on the line
{λ ∈ C : Re(λ) = −ε} for j = 1, . . . , n + α0. Combining the last two lines with [2, Theorem 6.2]
yields a constant k0 ∈ N such that, provided k = (k1, . . . , kn) ∈ Nn satisfies min{k1, . . . , kn} ≥ k0,
L(uk,ℓ)− ε possesses an eigenvalue λ of real part Re(λ) ≥ Re(λ0)/2 > 0, which proves the second
assertion.
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Remark 4. As mentioned in Remark 3, the N -pulses, established in Theorem 3, can suffer from
long-time instabilities triggered by the N eigenvalues near the origin, which are exponentially small
with respect to the distances between pulses. On the other hand, if one of the primary 1-pulses
constituting the N -pulse is spectrally unstable, the proof of Theorem 5 shows that we find an
eigenvalue λ of the linearization of (2.1) about the N -pulse of real part Re(λ) ≥ Re(λ0)/2 > 0.
That is, the real part of this eigenvalue obeys a positive lower bound, which is independent of the
distances between the 1-pulses constituting the N -pulse. Therefore, the instability in Theorem 5.(ii)
can be interpreted as a short-time instability.

The asymptotic orbital stability of spectrally stable N -pulses is now a direct consequence of the
following statement, which was proved in [1].

Theorem 6 ([1, Theorem 3]). Let u∞ ∈ R2 and let u : R → R2 be a smooth stationary solution
to (2.1) such that u(x) converges to u∞ as x → ±∞. If u is spectrally stable, then there exist
constants C, δ, η > 0 such that for all v0 ∈ H1(R) with ∥v0∥H1 ≤ δ there exist a constant γ ∈ R
and a function v ∈ C

(
[0,∞), H1(R)

)
with v(0) = v0 such that u = u+ v is the unique global mild

solution of (2.1) with u(0) = u+ v0 enjoying the estimate

∥u− u(·+ γ)∥H1 ≤ Ce−ηtδ

for all t ≥ 0.

3.3 Stability of periodic N-pulse solutions

We now turn to the stability analysis of the periodic multipulse solutions to (2.1), whose existence,
as outlined in §2.3, follows by combining Theorems 3 and 4. Our first step is to establish diffusive
spectral stability of these solutions, which, in turn, yields their nonlinear stability against localized
perturbations and against subharmonic perturbations of any wavelength.1

Diffusive spectral stability is defined in terms of the 1-parameter family of Bloch operators
associated with the linearization L(u)−ε of system (2.1) about a periodic smooth stationary solution
u = (u1,u2)

⊤ with period T > 0. These Bloch operators Lξ(u) − ε : H2
per(0, T ) ⊂ L2

per(0, T ) →
L2
per(0, T ) are given by

Lξ(u) = −(∂x + iξT )2 + ζ −
(
3u2

1 + u2
2 2u1u2

2u1u2 u2
1 + 3u2

2

)
, Lξ(u) = JLξ(u)

with ξ ∈ [−π, π). We then have the well-known spectral decomposition

σ(L(u)− ε) =
⋃

ξ∈[−π,π)

σ (Lξ(u)− ε) ,(3.4)

cf. [14]. The definition of diffusive spectral stability now reads as follows.

Definition 4. A smooth stationary T -periodic solution u : R → R2 of (2.1) is diffusively spectrally
stable provided the following conditions hold:

(i) We have σ(L(u)− ε) ⊂ {λ ∈ C : Re(λ) < 0} ∪ {0};
1We note that diffusive spectral stability is a standard assumption in the nonlinear stability analysis of periodic

traveling or steady waves in dissipative systems, see [23] and further references therein.
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(ii) There exists ϑ > 0 such that for all ξ ∈ [−π, π) we have Re (σ (Lξ(u)− ε)) ≤ −ϑξ2;

(iii) 0 is a simple eigenvalue of the Bloch operator L0(u)− ε.

Diffusive spectral stability of the periodic multipulse solutions to (2.1), studied in this paper, can
be obtained if the underlying multipulse is spectrally stable. In this case, we can apply the a-priori
bounds in Lemma 2 and the results in [2,15], to preclude any unstable spectrum outside a small ball
Bϱ(0) of radius ϱ > 0 centered at the origin. By [2, 15] the spectrum inside the ball Bϱ(0) is given
by a single smooth curve {λ0(ξ) : ξ ∈ [−π, π)}, which touches the origin by translational invariance.
Leading-order control on this critical spectral curve, provided by [43], then yields constants T̃0, ϖ >
0 and a partitioning of the half line [T̃0,∞) in intervals Ij = (T̃0+jϖ, T̃0+(j+1)ϖ), j ∈ N such that
diffusive spectral stability holds if the period T lies in Ij with j even, whereas spectral instability
holds for T ∈ Ij if j is odd. That is, the stability of the multipulse train alternates with the period.
On the other hand, if the underlying multipulse solution is spectrally unstable, then the associated
multipulse trains are spectrally unstable by [2, 15] for all periods T > 0 sufficiently large.

Theorem 7. Let

U = (U1, U2, U3, U4)
⊤ : R → R4

be a nondegenerate symmetric homoclinic solution of (2.3) connecting to a saddle-focus equilibrium
U∞ ∈ R4, as established in Theorem 3. Let {UT }T≥T0 be the corresponding family of smooth
T -periodic symmetric solutions

UT = (UT,1, UT,2, UT,3, UT,4)
⊤ : R → R4

of (2.3), established in Theorem 4. Denote by u = (U1, U2)
⊤,uT = (UT,1, UT,2)

⊤ : R → R2 the
associated stationary solutions of (2.1).

The following assertions hold.

(i) If u is a spectrally stable pulse solution of (2.1), then there exist constants T̃0, C, τ, δ, a > 0
and b ∈ R, an open set U ⊂ C containing the real interval [−π, π] and an analytic map
λ0 : U → C such that for all T ≥ T̃0 we have

σ(L(uT )− ε) ∩ {λ ∈ C : Re(λ) ≥ −τ} = {λ0(ξ) : ξ ∈ [−π, π)}.(3.5)

Moreover, λ0(ξ) = λ0(−ξ) is a real-valued algebraically simple eigenvalue of the Bloch operator
Lξ(uT )− ε for each ξ ∈ [−π, π) and T ≥ T̃0. Finally, the estimate∣∣λ0(ξ)− a(cos(ξ)− 1)e−2αT sin(2βT + b)

∣∣ ≤ C|eiξ − 1|e−(2α+δ)T(3.6)

holds for all ξ ∈ U and T ≥ T̃0, where α, β > 0 are as in Proposition 1.

If T ≥ T̃0 is such that sin(2βT + b) > 0, then uT is diffusively spectrally stable as a periodic
stationary solution to (2.1). Moreover, if T ≥ T̃0 is such that sin(2βT + b) < 0, then uT is
spectrally unstable as a stationary solution to (2.1).

(ii) Assume that u is spectrally unstable. Then, there exists a constant T̃0 > 0 such that for all
T ≥ T̃0 the stationary solution uT of (2.1) is spectrally unstable. In particular, Lξ(uT ) − ε
possesses spectrum in the open right-half plane for all ξ ∈ [−π, π).
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Proof. We start with the proof of the first assertion. Since the stationary pulse solution u of (2.1)
is spectrally stable, there exists a constant τ0 > 0 such that

σ(L(u)− ε) ∩ {λ ∈ C : Re(λ) ≥ −τ0} = {0},(3.7)

and 0 is an algebraically simple eigenvalue of L(u)−ε. Moreover, by the bound (2.8) in Theorem 4,
the L∞-norm of the solution uT can be bounded by a T -independent constant for T ≥ T0. Therefore,
Lemma 2, yields a T -independent compact set K ⊂ C such that

σ(L(uT )− ε) ∩ {λ ∈ C : Re(λ) ≥ − ε
2} ⊂ K.(3.8)

for all T ≥ T0. Take ϱ ∈ (0,min{ ε
2 , τ0}) and set K̃ := {λ ∈ K : Re(λ) ≥ −τ0} \ Bϱ(0). Using that

K̃ is compact and (3.7) holds, [2, Lemma 4.2] yields, provided T ≥ T0 is sufficiently large, that

σ(L(uT )− ε) ∩ K̃ = ∅(3.9)

and, moreover,

σ(Lξ(uT )− ε) ∩Bϱ(0) = {λ0(ξ)},(3.10)

where λ0(ξ) is an algebraically simple eigenvalue of the Bloch operator Lξ(uT ) − ε for each
ξ ∈ [−π, π). Hence, using that the Bloch operators depend analytically on ξ, it follows from
standard analytic perturbation theory, see [28, Sections II.1 and VII.3], that there exists an open
neighborhood U ⊂ C of the real interval [−π, π] such that λ0(ξ) can be extended to an analytic
map λ0 : U → C. By the same dimension-counting argument as in the proof of Theorem 3, the
(un)stable manifolds along the homoclinic U connecting to the saddle-focus equilibrium U∞ in the
dynamical system (2.3) are not in an inclination-flip configuration. Therefore, provided T > 0 is
sufficiently large, [43, Theorem 5.6] yields that λ0(ξ) is real-valued, we have λ0(ξ) = λ0(−ξ) for
all ξ ∈ [−π, π) and the approximation (3.6) holds with a > 0 (after possibly shifting b 7→ b + π).
Finally, the identities (3.4), (3.8), (3.9) and (3.10) imply (3.5) with τ = min{τ0, ε/2} > 0.

If T > 0 is sufficiently large with sin(2βT + b) > 0, then Cauchy’s estimate in conjunction with
the bound (3.6) yield λ′′

0(0) < 0. Hence, combining the latter with (3.6) and λ0(0) = 0 = λ′
0(0),

we infer that, provided T > 0 is sufficiently large, there exists ϑ > 0 such that λ0(ξ) ≤ −ϑξ2 for
all ξ ∈ [−ξ, ξ]. This, together with (3.5), implies diffusive spectral stability of uT as a periodic
stationary solution to (2.1). On the other hand, if T > 0 is sufficiently large with sin(2βT + b) < 0,
then by estimate (3.6) there exists ξ ∈ [−π, π)\{0} such that λ0(ξ) > 0. Therefore, uT is spectrally
unstable as a stationary solution to (2.1) upon recalling (3.5). This finishes the proof of the first
assertion.

We proceed with proving the second assertion. Assume that u is spectrally unstable. Then,
there exists λ0 ∈ σ(L(u)− ε) with Re(λ0) > 0. By [1, Lemma 4] the essential spectrum of L(u)− ε
is confined to the line {λ ∈ C : Re(λ) = −ε}. Therefore, we can apply [2, Theorem 7.2] to yield
that, provided T > 0 is sufficiently large, σ(Lξ(uT )− ε) possesses for each ξ ∈ [−π, π) an element
λ∗(ξ) of real part Re(λ∗(ξ)) ≥ Re(λ0)/2 > 0, which proves the second assertion.

Remark 5. If the underlying multipulse solution is spectrally unstable, then Theorem 7.(ii) shows
that each of the Bloch operators Lξ(uT )− ε with ξ ∈ [−π, π) possesses spectrum in the open right-
half plane. That is, the multipulse train uT is spectrally unstable against subharmonic perturba-
tions of any wavelength. In particular, it is spectrally unstable against co-periodic perturbations.
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On the other hand, if the underlying multipulse solution is spectrally stable, then Theorem 7.(i)
yields that the spectrum of the Bloch operator L0(uT ) − ε lies in the open left-half plane except
for the algebraically simple eigenvalue λ0(0) = 0. That is, the multipulse train uT is spectrally
stable against co-periodic perturbations. Moreover, if in addition sin(2βT + b) < 0 holds, we find
λ′′
0(0) > 0 by applying Cauchy’s estimate to the bound (3.6). Hence, using that λ0(0), λ

′
0(0) = 0

holds by Theorem 7, we infer that Lξ(uT )−ε possesses unstable spectrum for each ξ ∈ [−π, π)\{0}
sufficiently small. We conclude that the multipulse train is sideband unstable, i.e., it is spectrally
unstable against subharmonic perturbations of sufficiently large wavelength.

Remark 6. Similarly as in the case for multipulse solutions, cf. Remark 4, we can distinguish
between short- and long-time instabilities of multipulse trains. On the one hand, the critical spectral
curve λ0(ξ) in Theorem 7.(i) is exponentially small in terms of the period T by estimate (3.6). Thus,
any instabilities arising from this curve can be interpreted as long-time instabilities of the multipulse
train. On the other hand, if the underlying multipulse solution is spectrally unstable, then the proof
of Theorem 7.(ii) shows that the linearization of (2.1) about the multipulse train admits unstable
spectrum, whose real part can be bounded from below by a positive bound, independent of T .
Thus, these instabilities can be interpreted as short-time instabilities.

The proof of our main result, Theorem 1, now follows by combining the diffusive spectral
stability result in Theorem 7 with [23,46].

Proof of Theorem 1. Since it holds 8ζ < π2f2, πf cos θ0 = 2
√
2ζ and sin θ0 > 0, Theorem 2 provides

constants C0, ε0 > 0 such that for each ε ∈ (0, ε0) there exist an asymptotic state u∞,ε and an even
spectrally stable smooth stationary 1-pulse solution uε of (2.1) obeying (2.4).

Fix ε ∈ (0, ε0). We apply Theorems 3 and 5 with ℓ = N − 1 to yield constants C1, k0 > 0 such
that for each k = (k1, . . . , kn) ∈ Nn with min{k1, . . . , kn} ≥ k0 there exist distances T k1

i,ε , . . . , T
kn
n,ε

and an even spectrally stable smooth stationary N -pulse solution uk,ε of (2.1) enjoying the estimate∣∣∣∣∣uk,ε(x)− u∞,ε − α0 (uε(x)− u∞,ε)−
n∑

i=1

(
uε

(
x− T k1

1,ε − . . .− T ki
i,ε

)
+uε

(
x+ T k1

1,ε + . . .+ T ki
i,ε

)
− 2u∞,ε

)∣∣∣∣∣ ≤ C1

min{k1, . . . , kn}

for x ∈ R. Here, the sequence {T k
i,ε}k of pulse distances is monotonically increasing with T k

i,ε → ∞
as k → ∞ for i = 1, . . . , n. Combining the latter estimate with (2.4) implies∣∣∣∣∣uk,ε(x)− α0ϕθ0(x)−

n∑
i=1

(
ϕθ0

(
x− T k1

1,ε − . . .− T ki
i,ε

)
+ ϕθ0

(
x+ T k1

1,ε + . . .+ T ki
i,ε

))∣∣∣∣∣
≤ 2C0ε

(3.11)

for each x ∈ R and k ∈ Nn with min{k1, . . . , kn} ≥ k0, upon taking k0 > 0 larger if necessary.
Now, fix k ∈ Nn with min{k1, . . . , kn} ≥ k0. By Proposition 1 and Theorems 4 and 7 there

exists a monotonically increasing sequence of periods {Lm
k,ε}m such that for each m ∈ N there exists

an even diffusively spectrally stable smooth stationary periodic solution um,k,ε(x) of (2.1) of period
Lm
k,ε satisfying the estimate

sup
x∈[− 1

2
Lm
k,ε,

1
2
Lm
k,ε]

∣∣um,k,ε(x)− uk,ε(x)
∣∣ ≤ C0ε.(3.12)
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Here, the sequence {Lm
k,ε}m tends to ∞ as m → ∞ and obeys (1.6) for each m ∈ N. Thus, we have

established assertions (i), (ii) and (iv). Moreover, assertion (iii) follows readily by combing (3.11)
and (3.12). Assertion (v) is a direct consequence of the diffusive spectral stability of um,k,ε in
combination with [46, Theorem 1], see also [24, Theorem 1.2]. Similarly, assertion (vi) follows
immediately from [23, Theorem 1.3].

Remark 7. Diffusive spectral stability of T -periodic stationary solutions to the LLE even yields a
nonlinear stability result [24] against MT -periodic perturbations that is uniform in M ∈ N, as well
as nonlinear stability against nonlocalized phase modulations [54]. We refer to [24, 54] for further
details.
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