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FINITE ELEMENT DISCRETIZATION OF NONLINEAR MODELS OF

ULTRASOUND HEATING

JULIO CAREAGA‡, BENJAMIN DÖRICH†, AND VANJA NIKOLIĆ§

Abstract. Heating generated by high-intensity focused ultrasound waves is central to many emerg-
ing medical applications, including non-invasive cancer therapy and targeted drug delivery. In this
study, we aim to gain a fundamental understanding of numerical simulations in this context by an-
alyzing conforming finite element approximations of the underlying nonlinear models that describe
ultrasound-heat interactions. These models are based on a coupling of a nonlinear Westervelt–
Kuznetsov acoustic wave equation to the heat equation with a pressure-dependent source term. A
particular challenging feature of the system is that the acoustic medium parameters may depend on
the temperature. The core of our new arguments in the a prior error analysis lies in devising energy
estimates for the coupled semi-discrete system that can accommodate the nonlinearities present in
the model. To derive them, we exploit the parabolic nature of the system thanks to the strong
damping present in the acoustic component. Theoretically obtained optimal convergence rates in
the energy norm are confirmed by the numerical experiments. In addition, we conduct a further
numerical study of the problem, where we simulate the propagation of acoustic waves in liver tissue
for an initially excited profile and under high-frequency sources.

1. Introduction

High-intensity focused ultrasound (HIFU) waves are known to act as a source of heat within
the body. This heating phenomenon is at the core of many developing medical applications, in-
cluding non-invasive ablation of cancer and targeted drug delivery; see, e.g., [2, 8] for details.
Rigorous mathematical research into the underlying (inherently nonlinear) models of wave-heat in-
teractions has been initiated relatively recently with the contributions of, e.g., [1, 1, 2], which have
investigated local and global well-posedness of the exact models. To the best of our knowledge,
rigorous numerical understanding in this context is currently missing in the literature. In this work,
we investigate conforming finite element approximations of the underlying models and develop a
theoretical framework for their a priori error analysis. Ultrasound-heat interactions present
in HIFU-induced heating can be captured using a coupled system based on a damped nonlinear
acoustic equation and the heat equation as follows:

(1.1)

{
utt − c2(θ)∆u− β(θ)∆ut +N (u, ut, utt,∇u,∇ut, θ) = f, in Ω× (0, T ),

θt − κ∆θ + νθ = Q(u, ut, θ), in Ω× (0, T ),

with damping coefficients κ, ν > 0. Heating occurs due to the acoustic energy that is absorbed
by the tissue, which is here modeled by having a pressure-dependent source term Q in the heat
equation. The acoustic medium parameters are known to depend on the temperature, resulting in
the so-called thermal lensing effect, where the focal region of the ultrasound waves may shift with
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changes in the temperature. In particular, this temperature dependency is seen in the speed of
sound c and sound diffusivity β; the latter is computed using the relation

β = 2
α̃c3

ω2
,

where α̃ = α̃(θ) denotes the acoustic amplitude absorption coefficient and ω the angular frequency;
see [5].

The acoustic wave equation in (1.1) generalizes the classical Westervelt and Kuznetsov equations
in nonlinear acoustics. In the case of the Westervelt equation, u in (1.1) represents the acoustic
pressure p, whereas in the Kuznetsov equation u represents the acoustic velocity potential ψ. The
two quantities can be related using p = ρψt, where ρ is the medium density. Concerning the
nonlinearities, these two classical equations are recovered with the following choices:

N =

{
kW(θ)

(
u2

)
tt
= 2kW(θ)

(
uutt + u2t

)
Westervelt’s equation,

kK(θ)
(
u2t

)
t
+ (|∇u|2)t = 2kK(θ)ututt + 2∇u · ∇ut Kuznetsov’s equation,

where the temperature-dependent nonlinearity coefficients are given by

(1.2) kW =
1

ρc2
(1 + B

2A), kK =
1

c2
B

2A
.

In (1.2), B
A represents the acoustic nonlinearity parameter of the medium. Note that this parameter

is also known to depend on the temperature; see, for example, [2, Fig. 7].

1.1. Mathematical generalization of the model. To encompass both nonlinearity cases we
assume in the analysis that the functional N is given by

(1.3) N (u, ut, utt,∇u,∇ut, θ) = kW(θ)
(
u2

)
tt
+ kK(θ)

(
u2t

)
t
+ ℓ(|∇u|2)t, ℓ ∈ R.

Concerning the nonlinearity coefficients in (1.3), we assume that

kW, kK ∈ C0,1
loc (R).

Assumptions on the medium parameters. Let q = c2. Regarding the temperature-dependent speed
of sound and sound diffusivity, we assume that q ∈ Pm(R) and b ∈ Pn(R) are polynomials over R
of maximal degree m ∈ N and n ∈ N, respectively, and such that

q0 := q(0) > 0, β0 := β(0) > 0.

These positivity assumptions correspond to the usual assumptions of positivity of the speed of
sound and sound diffusivity at constant temperatures. We emphasize that the condition β0 > 0
is particularly important as the presence of strong damping in the acoustic component (that is,
having −β0∆ut) will allow us to employ parabolic estimates in the numerical analysis.

In practice, the speed of sound and the acoustic attenuation coefficient are indeed typically
determined via a least-squares fit from data assuming polynomial dependence on the temperature;
see, e.g., [1, 3, 5].

Assumptions on the absorbed energy. In the literature, different forms of the functional Q in (1.1)
are employed; see, e.g., [1, 1, 5], and the references contained therein. We assume here that Q has
the following form:

Q(u, ut, θ) = α(θ)(ζ1u
2 + ζ2u

2
t ) with α ∈ C1,1

loc (R), ζ1, ζ2 ∈ R.
This allows us to cover, for example, the plane wave approximation for the volume rate of heat
deposition (see [1, eq. (10.2.11)]) given by Q = α̃

ρcp
2 in both Westervelt and Kuznetsov regimes,

where the acoustic pressure is p = u and p = ρut, respectively. Another expression for the absorbed
energy found in the literature (see, e.g., [1]) is Q = 2β

ρc4
p2t , which is covered here in the Westervelt

regime, where p = u.
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Remark 1.1. Note that according to the available well-posedness results for the Westervelt–heat
systems, the non-degeneracy condition

q(θ) ≥ q > 0

is expected to hold for sufficiently smooth and small pressure-temperature data. Thus, in the case
α ∼ β/q2, the assumed regularity of α follows by the assumed properties of q and β.

Notation. We use x ≲ y below to denote x ≤ Cy, where C > 0 does not depend on the spatial
discretization parameter h. By (·, ·)L2 we denote the scalar product on L2(Ω). We often omit the
temporal domain (0, T ) when denoting the norms in Bochner spaces; for example, ∥ · ∥Lp(Lq(Ω))

denotes the norm on Lp(0, T ;Lq(Ω)). We use the subscript t to emphasize that the temporal
domain is (0, t) for some t ∈ (0, T ); for example, ∥ · ∥Lp

t (L
q(Ω)) denotes the norm on Lp(0, t;Lq(Ω))

for t ∈ (0, T ).

1.2. Assumptions on the exact solution. Let Ω ⊂ Rd, d ∈ {1, 2, 3}, be an open and bounded
set. Considering data, we assume homogeneous Dirichlet boundary conditions for the pressure and
temperature and sufficiently regular initial pressure and temperature data. That is, we consider
the approximation of the following initial-boundary value problem:

(1.4)



utt − q(θ)∆u− β(θ)∆ut +N (u, ut, utt,∇u,∇ut, θ) = f in Ω× (0, T ),

θt − κ∆θ + νθ = Q(u, ut, θ) in Ω× (0, T ),

u|∂Ω = θ|∂Ω = 0,

(u, ut)|t=0 = (u0, u1), θ|t=0 = θ0,

with N as in (1.3). Given η ≥ 1 (which will denote the polynomial degree of the finite element
basis functions on an element), we assume that there exists a unique solution of the problem such
that

(u, θ) ∈ Xu ×Xθ,

with
∥u∥Xu + ∥θ∥Xθ

≤ C

for some C > 0, where the two spaces are defined as follows:

Xu =
{
u : u ∈ L∞(0, T ;Hη+1(Ω) ∩W 1,∞(Ω) ∩H1

0 (Ω)),

ut ∈ L∞(0, T ;Hη+1(Ω) ∩W 1,∞(Ω) ∩H1
0 (Ω))

utt ∈ L2(0, T ;Hη+1(Ω))
}

and

Xθ =
{
θ : θ ∈ L∞(0, T ;Hη+1(Ω) ∩W 1,∞(Ω) ∩H1

0 (Ω)) ∩ L2(0, T ;W η+1,d+δ(Ω) ∩W η+1,∞(Ω)),

θt ∈ L∞(0, T ;Hη+1(Ω)) ∩W 1,∞(Ω)
}

with d+ δ ∈ [2, 6]. For the upcoming analysis, it is worth noting that

Xu, Xθ ↪→ L∞(0, T ;L∞(Ω)).

Furthermore, our main theoretical result (see Theorem 1.2) assumes that there exists a sufficiently
small r > 0, such that

(1.5) ∥(β − β0)(θ)∥L∞(L∞(Ω)) + ∥kW(θ)u∥C(L∞(Ω)) + ∥kK(θ)ut∥C(L∞(Ω)) + ∥α(θ)ut∥C(L∞(Ω)) ≤ r.

The small-data well-posedness analysis of (1.4) in the Westervelt case (and somewhat simplified
function Q) based on energy arguments can be found in [1, 1], under the assumption that the
function q does not degenerate and that β = const. > 0. In [2], the concept of maximal Lp-Lq

regularity has been utilized to show local and global well-posedness of the non-isothermal Westervelt
equation. The small-data local and global well-posedness of the Kuznetsov equation with constant
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medium parameters can be found in [1]. Although wave-heat system (1.4) in its full generality
assumed here does not appear to have been studied rigorously in the literature in terms of well-
posedness, we expect that the general framework of [2] can be utilized for this purpose. The
smallness assumption in (1.5) can then be enforced (via continuous dependence on data) by the
smallness of initial data (u0, u1, θ0).

1.3. Main result. We next present the main theoretical result of this work. We employ Lagrange
finite elements here on a quasi-uniform triangulation Th and introduce the finite element space
incorporating the homogeneous boundary conditions

(1.6) Vh :=
{
ϕh ∈ C0(Ω) | ϕh|K ∈ Pη(K) for all K ∈ Th

}
of piecewise polynomials of degree η ≥ 1, which is used both for the pressure and temperature. We
introduce the Ritz projection defined for φ ∈ H1

0 (Ω) via

(∇φ,∇ϕh)L2 = (∇Rhφ,∇ϕh)L2

for all ϕh ∈ Vh. Further, we rely on the nodal interpolation operator Ih : C(Ω) → Vh, and define
the discrete Laplacian operator ∆h : Vh → Vh for ψh, ϕh ∈ Vh via the relation

(∆hψh, ϕh)L2 = −(∇ψh,∇ϕh)L2 .

Further, we introduce the bilinear functional a(·, ·) : Vh × Vh → R as follows:

a(ψh, ϕh) = (∇ψh,∇ϕh)L2 .

With these preparations, we consider the semi-discrete acoustic problem:

(1.7a)
(∂2t uh, ϕh)L2 + a(uh, q(θh)ϕh) + a(∂tuh, β(θh)ϕh)

+ (N (uh, ∂tuh, ∂
2
t uh,∇uh,∇∂tuh, θh), ϕh)L2 = (fh, ϕh)L2

for all ϕh ∈ Vh, t ∈ [0, T ], with

(1.7b) (uh, ∂tuh)|t=0 = (u0h, u1h).

Note that
a(uh, q(θh)ϕh) = a(uh,Rh[q(θh)ϕh]) = −(∆huh,Rh[q(θh)ϕh])L2 ,

a(∂tuh, β̃(θh)ϕh) = a(∂tuh,Rh[β̃(θh)ϕh]) = −(∆h∂tuh,Rh[β̃(θh)ϕh])L2 .

The semi-discrete heat equation is given by

(1.8a) (∂tθh, ϕh)L2 + κa(θh, ϕh) + ν(θh, ϕh)L2 = (Q(uh, ∂tuh, θh), ϕh)L2

for all ϕh ∈ Vh, t ∈ [0, T ], with

(1.8b) θh|t=0 = θ0h.

Our main theoretical result establishes a priori error bounds for (uh, θh) in the energy norm.

Theorem 1.2 (A priori error estimate). Let the assumptions made on the temperature-dependent
functions in Section 1.1 and on the exact solution (u, θ) of (1.4) in Section 1.2 hold with η ≥ 1.
Assume that f , fh ∈ L2(0, T ;L2(Ω)) are such that

∥f − fh∥L2(L2(Ω)) ≤ Chη

and that the approximate initial data are chosen as the Ritz projections of the exact ones; that is,

(uh(0), ∂tuh(0)) = (Rhu0,Rhu1), θh(0) = Rhθ0.

Then, there exist h0 > 0 and r > 0, independent of h, such that for all h ≤ h0 and

(1.9) ∥(β − β0)(θ)∥L∞(L∞(Ω)) + ∥kW(θ)u∥C(L∞(Ω)) + ∥kK(θ)ut∥C(L∞(Ω)) + ∥α(θ)ut∥C(L∞(Ω)) ≤ r,
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problem (1.7), (1.8) has a unique solution (uh, θh) ∈ H2(0, T ;Vh)×H1(0, T ;Vh), which satisfies the
following error bound:

∥∂2t (u− uh)∥L2
t (L

2(Ω)) + ∥∇∂t(u− uh)∥L∞
t (L2(Ω)) + ∥∇(u− uh)∥L∞

t (L6(Ω))

+ ∥∂t(θ − θh)∥L∞
t (L2(Ω)) + ∥∇(θ − θh)∥L∞

t (L6(Ω)) ≤ C(∥u∥Xu , ∥θ∥Xθ
)hη.

Discussion of the main result. Theorem 1.2 establishes sufficient conditions for the optimal
order of convergence of (uh, θh) in the energy norm. Let us discuss some of the assumptions. The
need for using the Ritz projection of the initial values comes from bounds involving ∆h applied to
the initial error; see Sections 4 and 5. A different choice, say, for example, the nodal interpolation,
would lead to an order reduction in the error analysis.

The assumption that the exact temperature should satisfy θ ∈ L2(0, T ;W η+1,d+δ(Ω)) comes from
the need to estimate the error in the temperature dependent coefficients β and q. In particular, we
need to employ the following estimate for w ∈ {q, β̃} (see (5.3) below):

∥w(θ)− w(θh)∥L2
t (W

1,d+δ(Ω)) ≲ ∥θ − θh∥L2
t (W

1,d+δ(Ω))

≲ ∥θh − Rhθ∥L2
t (W

1,d+δ(Ω)) + ∥θ − Rhθ∥L2
t (W

1,d+δ(Ω)),

and then further use the bound ∥θ−Rhθ∥L2(W 1,d+δ(Ω)) ≲ hη∥θ∥L2(W η,d+δ(Ω)) (see Section 2.4 for the

approximation properties of the Ritz projection).
Similarly, the assumption that θ ∈ L2(0, T ;W η+1,∞(Ω)) comes from needing to estimate the error

in the temperature-dependent coefficients kW and kK. In particular, we will employ the following
bound (see (5.4) below):

∥kW(θ)− kW(θh))∥L2
t (L

∞(Ω)) + ∥kK(θ)− kK(θh))∥L2
t (L

∞(Ω))

≲ ∥θ − θh∥L2
t (L

∞(Ω))

≲ ∥θh − Rhθ∥L2
t (L

∞(Ω)) + ∥θ − Rhθ∥L2
t (L

∞(Ω))

and then further need to rely on the fact that ∥θ − Rhθ∥L2(L∞(Ω)) ≲ hη∥θ∥L2(W η+1,∞(Ω)). Even
though this regularity assumption could be improved, we still need it for a technical estimate
within the proof of Lemma 4.2.

Finally, let us note that there is a large literature available on the discretization of nonlinear
wave equations originating from the seminal work [1]. However, they do not consider the coupled
wave-heat case, and we thus refrain from a further discussion.

1.4. Organization of the rest of the paper. The rest of the paper is organized as follows.
In Section 2, we provide background results on parabolic estimates which are used in the well-
posedness and error analysis of the semi-discrete problem, as well as certain useful properties of
the Ritz projection and known embedding and inverse estimates. In Section 3, we prove that the
semi-discrete problem has an accurate solution, however, on a possibly h-dependent time interval.
Toward prolonging the existence of this solution to [0, T ], we then focus on deriving uniform energy
estimates for the wave and heat subproblems in Sections 4 and 5, respectively. These are combined
in Section 6 to prove of the main theoretical result of this work stated in Theorem 1.2. Finally,
in Section 7 we validate the theoretical convergence rate through numerical experiments and pro-
vide additional numerical examples, where we show the performance of the model and developed
numerical schemes.

2. The approach and auxiliary results

Our numerical analysis follows by first proving the existence of a solution (uh, θh) on a possibly
discretization-dependent time interval [0, t∗h] and then extending the existence to [0, T ] by means of
a suitable uniform bound on this solution. This approach is in the general spirit of, e.g., [1, 6, 7],
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which have investigated single-physics wave models. The focal and most delicate point of the
numerical analysis here is the derivation of a suitable energy bound for the nonlinear wave-heat
system. To this end, since the acoustic component is strongly damped, the idea is to rewrite the
semi-discrete problem in the following parabolic form:

(2.1)

{
∂2t uh − β0∆h∂tuh = q(θ)∆huh + β̃(θh)∆h∂tuh −N (uh, ∂tuh, ∂

2
t uh,∇uh,∇∂tuh, θh) + fh,

∂tθh − κ∆hθh + νθh = Q(uh, ∂tuh, θh),

with β̃(θh) := β(θh)−β0. This setup will allow us to exploit, to a certain extent, estimates for semi-
discrete parabolic problems. For this reason, we present next two estimates for linear parabolic
problems that will be used in Sections 4 and 5.

2.1. A maximal regularity estimate for linear parabolic problems. Given gh ∈ L2(0, T ;Vh),
b0 > 0 and ν ≥ 0, consider the problem

(2.2) (∂twh, φh)L2 + b0a(wh, φh) + ν(wh, φh)L2 = (gh, φh)L2 , ∀φh ∈ Vh.

The finite element analysis of this problem with homogeneous initial data using a maximal Lp

regularity approach can be found, for example, in [1, Theorem 1.1]. For completeness, we present
here the derivation of the L2-based energy bound, where compared to [1] we allow for non-zero
initial data.

Lemma 2.1. Let gh ∈ L2(0, T ;Vh). The solution of (2.2) satisfies

(2.3)

1

2

∫ t

0
∥∂twh(s)∥2L2(Ω) ds+

(b0
2

+ 1
)
∥∇wh∥2L2(Ω)

∣∣t
0
+
ν

2
∥wh∥2L2(Ω)

∣∣t
0

+
b0
2

∫ t

0
∥∆hwh(s)∥2L2(Ω) ds+ ν

∫ t

0
∥∇wh(s)∥2L2(Ω) ds

≤ 1

2

(
1 +

1

b0

)∫ t

0
∥gh(s)∥2L2(Ω) ds.

Proof. We test (2.2) with φh = ∂twh and integrate over (0, t) for t ∈ (0, T ) to obtain∫ t

0
∥∂twh(s)∥2L2(Ω) ds+

b0
2
∥∇wh∥2L2(Ω)

∣∣t
0
+
ν

2
∥wh∥2L2(Ω)

∣∣t
0
=

∫ t

0
(gh(s), ∂twh(s))L2 ds.

By choosing instead φh = −∆hwh, we obtain

∥∇wh∥2L2(Ω)

∣∣t
0
+ b0

∫ t

0
∥∆hwh(s)∥2L2(Ω) ds+ ν

∫ t

0
∥∇wh(s)∥2L2(Ω) ds =

∫ t

0
(gh(s),∆hwh(s))L2 ds.

Adding the estimates and employing Young’s inequality yields (2.3). □

The bound in Lemma 2.2 will be employed in the error analysis of the semi-discrete wave sub-
problem in Section 4 with wh = ∂t(Rhu− uh).

2.2. Additional estimate for a more regular right-hand side. When working with the semi-
discrete heat equation, we will have a relatively regular in time right-hand side due to the properties
of the semi-discrete pressure field. For this reason, we also derive here an additional bound for
parabolic problems that assumes more regularity in time of the right-hand side.

Lemma 2.2. Let gh ∈ H1(0, T ;Vh). Then the solution of (2.2) satisfies

(2.4)
∥∂twh(t)∥2L2(Ω) +

∫ t

0
∥∇∂twh(s)∥2L2(Ω) ds+

b0
2
∥∆hwh(t)∥2L2(Ω) +

ν

2
∥∇wh(t)∥2L2(Ω)

≲ eCT (∥gh∥2H1(L2(Ω)) + ∥∆hwh(0)∥2L2(Ω) + ∥∇wh(0)∥2L2(Ω)).



FINITE ELEMENT DISCRETIZATION OF MODELS OF ULTRASOUND HEATING 7

Proof. Note that gh ∈ H1(0, T ;Vh) ↪→ C([0, T ];Vh). Testing with φh = −∆h∂twh and integrating
in time leads to∫ t

0
∥∇∂twh(s)∥2L2(Ω) ds+

b0
2
∥∆hwh∥2L2(Ω)

∣∣t
0
+
ν

2
∥∇wh∥2L2(Ω)

∣∣t
0
= −

∫ t

0
(gh(s),∆h∂twh(s))L2 ds.

To treat the right-hand side, we integrate by parts in time:

−
∫ t

0
(gh(s),∆h∂twh(s))L2 ds = −(gh(s),∆hwh(s))L2

∣∣t
0
+

∫ t

0
(∂tgh(s),∆hwh(s))L2 ds.

Using Young’s inequality, we have for any ε > 0∫ t

0
∥∇∂twh(s)∥2L2(Ω) ds+

b0
2
∥∆hwh∥2L2(Ω)

∣∣t
0
+
ν

2
∥∇wh∥2L2(Ω)

∣∣t
0

≲ ∥gh(t)∥2L2(Ω) + ε∥∆wh(t)∥2L2(Ω) + ∥gh(0)∥2L2(Ω) + ∥∆hwh(0)∥2L2(Ω)

+

∫ t

0
∥∂tgh(s)∥2L2(Ω) ds+

∫ t

0
∥∆hwh(s)∥2L2(Ω) ds.

Then by choosing ε sufficiently small and employing Grönwall’s inequality, we obtain∫ t

0
∥∇∂twh(s)∥2L2(Ω) ds+

b0
2
∥∆hwh(t)∥2L2(Ω) +

ν

2
∥∇wh(t)∥2L2(Ω)

≲ eCT (∥gh∥2H1(L2(Ω)) + ∥∆hwh(0)∥2L2(Ω) + ∥∇wh(0)∥2L2(Ω)).

Additionally, since ∂twh = b0∆hwh − νwh + gh, we can bootstrap the above estimate to obtain

∥∂twh(t)∥2L2(Ω) = ∥b0∆hwh(t)− νwh(t) + gh(t)∥2L2(Ω)

≲ eCT (∥gh∥2H1(L2(Ω)) + ∥∆hwh(0)∥2L2(Ω) + ∥∇wh(0)∥2L2(Ω)).

By adding the two bounds, we arrive at (2.4). □

The bound in Lemma 2.2 will be employed in the error analysis of the semi-discrete heat sub-
problem in Section 5 with wh = Rhθ − θh.

2.3. Embeddings and inverse estimates. When deriving estimates in Sections 4 and 5, we
will utilize (discrete) embedding results and inverse estimates for finite element functions in the
upcoming error analysis. In particular, the following embedding holds:

H2(Ω) ↪→W 1,d+δ(Ω) ↪→ L∞(Ω), d ∈ {1, 2, 3}, δ > 0.

For ϕh ∈ Vh, we have the discrete Sobolev embedding

(2.5) ∥ϕh∥L∞(Ω) + ∥ϕh∥W 1,6(Ω) ≤ C∥∆hϕh∥L2(Ω),

where C is independent of h; see, for example, [1, 6, 9]. Furthermore, the following inverse estimates
are used in the analysis:

∥∇φh∥L2(Ω) ≤ Ch−1∥φh∥L2(Ω),(2.6a)

∥∆hφh∥L2(Ω) ≤ Ch−1∥∇φh∥L2(Ω),(2.6b)

∥φh∥L∞(Ω) ≤ Ch−d/p∥φh∥Lp(Ω),(2.6c)

for φh ∈ Vh and p ∈ [1,∞], with constants independent of h.
We also recall the following bounds for the interpolant:

∥φ− Ihφ∥Lp(Ω) + h∥φ− Ihφ∥W 1,p(Ω) ≤ Chℓ+1∥φ∥W ℓ+1,p(Ω), φ ∈W ℓ+1,p(Ω),

for 2 ≤ p ≤ ∞ and 1 ≤ ℓ ≤ k.
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2.4. Properties of the Ritz projection. In Sections 4 and 5, we also heavily rely on certain
properties of the Ritz projection. We collect these results here for convenience. For the purpose of
estimating the approximation errors in the upcoming analysis, we need the following approximation
result for 0 ≤ ℓ ≤ η:

h∥φ− Rhφ∥W 1,p(Ω) ≤ Chℓ+1∥φ∥W ℓ+1,p(Ω), φ ∈W ℓ+1,p(Ω),(2.7)

for all 2 ≤ p ≤ ∞; see, for example, [4, Thm. 8.5.3]. In particular, we often employ the stability
bound

∥Rhφ∥L∞(Ω) ≤ C∥φ∥W 1,∞(Ω).

Note that one could also replace the right-hand side with the W 1,p-norm for p > d, but for better
readability, we employ the above bound. We further need the estimate

(2.8) ∥Rhφ− φ∥L∞(Ω) ≤ Ch1/2∥φ∥H2(Ω),

which is obtained by inserting the nodal interpolation operator, using the inverse estimates (2.6),
and the L∞-estimate in [4, Theorem 4.4.20].

Lemma 2.3. Let δ > 0, d ∈ {1, 2, 3}, and µ ∈ Cη+1(R). Then, there is a constant C > 0,
independent of h, such that for all ϕh ∈ Vh it holds

∥Rh[µ(ψh)ϕh]∥L2(Ω) ≤ ∥µ(ψh)∥L∞(Ω)∥ϕh∥L2(Ω) + hδ/(d+δ)C(∥ψh∥W 1,d+δ(Ω))∥ϕh∥L2(Ω).

Proof. The proof can be found in Appendix A. □

3. Existence and uniqueness on a discretization-dependent time interval

In this section, we show that the problem has a solution on a possibly h-dependent time interval
[0, t∗h]. In subsequent sections, we will carry out the estimates on this time interval with the goal of
obtaining a uniform bound on (uh, θh) in a suitable norm that will allow us to prolong the existence
to [0, T ]. As usual, we split the errors as follows:

u− uh =(u− Rhu) + (Rhu− uh) ,

θ − θh =(θ − Rhθ) + (Rhθ − θh) ,

and denote the discrete errors by euh = Rhu− uh and eθh = Rhθ − θh.
We aim to prove that the semi-discrete problem has a solution on the time interval [0, t∗h], where

we define t∗h as follows:

(3.1)

t∗h := sup
{
t ∈ (0, T ] | a unique solution (uh, θh) ∈ C2([0, t];Vh)× C1([0, t];Vh)

of (1.7) and (1.8) exists and

h−1/2−ε(∥∂teuh(s)∥H1(Ω) + ∥∆he
u
h(s)∥L2(Ω)) ≤ C0,

h−1/2−ε∥∆he
θ
h(s)∥L2(Ω) ≤ C0,

for all s ∈ [0, t]
}

for some ε ∈ (0, 1/2), and a constant C0 > 0 independent of h. The particular choice of terms
and norms involved in (3.1) is motivated by the needs of deriving the estimates, as will become
apparent below and in Sections 4 and 5. The first claim of this section concerns the accuracy of
the approximate initial data.

Lemma 3.1. Under the assumptions of Theorem 1.2, with the approximate initial values chosen
to be (uh(0), ∂tuh(0), θh(0)) = (Rhu0,Rhu1,Rhθ0), we have

∥∂teuh(0)∥H1(Ω) + ∥∆he
u
h(0)∥L2(Ω) ≤ Chη
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and

∥∆he
θ
h(0)∥L2(Ω) ≤ Chη.

Proof. With our choice of the initial data we immediately have euh(0) = ∂te
u
h(0) = eθh(0) = 0, and

thus the statement trivially holds. □

We next tackle the existence of a unique solution of the semi-discrete system on a possibly
h-dependent time interval, which will allow us to conclude that t∗h > 0.

Proposition 3.2. Under the assumptions of Theorem 1.2, we have t∗h > 0.

Proof. The statement will follow by considering a first-order rewriting of the system and applying
on it a local version of the Picard–Lindelöf theorem on the open set

(3.2) Uh =
{
(uh, ∂tuh, θh) ∈ V 3

h : ∥kW(θh)uh∥L∞(Ω) + ∥kK(θh)∂tuh∥L∞(Ω) < r + δ
}

with δ > 0 to be determined below, and radius r from Theorem 1.2. To see that the initial values
belong to Uh, we can uniformly bound θh(0) using the inverse estimate in (2.6c) and discrete
embedding (2.5) as follows:

(3.3)

∥θh(0)− θ(0)∥L∞(Ω) ≲h−d/6∥θh(0)− Rhθ(0)∥L6(Ω) + ∥Rhθ(0)− θ(0)∥L∞(Ω)

≲h−d/6∥∇(θh(0)− Rhθ(0))∥L2(Ω) + ∥Rhθ(0)− θ(0)∥L∞(Ω)

≲h−d/6∥∆he
θ
h(0)∥L2(Ω) + h1/2∥θ∥L∞

t (H2(Ω)) ≤ Chε,

where we have used Lemma 3.1 in the last step. Considering the uh(0) and ∂tuh(0) terms, we
similarly have

(3.4)
∥uh(0)− u(0)∥L∞(Ω) ≲ h−d/6∥∆he

u
h(0)∥L∞

t (L2(Ω)) + h1/2∥u∥L∞
t (H2(Ω)) ≤ Chε,

∥∂tuh(0)− ut(0)∥L∞(Ω) ≲ h−d/6∥∇∂teuh(0)∥L2(Ω) + h1/2∥ut∥L∞
t (H2(Ω)) ≤ Chε,

using (2.8). Combining the three estimates yields

(3.5)
∥kW(θh(0))uh(0)− kW(θ(0))u(0)∥L∞(Ω) ≤ Chε,

∥kK(θh(0))∂tuh(0)− kK(θ(0))ut(0)∥L∞(Ω) ≤ Chε,

and thus (uh(0), ∂tuh(0), θh(0)) ∈ Uh for any δ if h ≤ h0 is small enough.
To state the semi-discrete problem in a compact manner, we introduce the operator Λh defined

by

(Λh(uh, ∂tuh, θh)φh, ψh)L2 = ((1 + 2kW(θh)uh + 2kK(θh)∂tuh)φh, ψh)L2

for φh, ψh ∈ Vh. Further, given µ ∈ C0,1(R), we introduce the operator

(Ah(µ(θh))φh, ψh)L2 =(∇φh,∇(µ(θh)ψh))L2 .

The time-differentiated semi-discrete problem can then be written as (with L2-projection πh)

(3.6)

Λh(uh, ∂tuh, θh)∂
2
t uh =Ah(q(θh))uh +Ah(β(θh))∂tuh

− 2πh
(
kW(θh)∂tu

2
h + ℓ∇uh · ∂tuh

)
− fh,

∂tθh = − κ∆hθh − νθh + πhQ(uh, ∂tuh, θh).

Note that the operator Λh is invertible on Uh for small enough r, since we can find γ, δ > 0,
independent of h, such that

1 + 2kW(θh)uh + 2kK(θh)∂tuh ≥ γ > 0.
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Therefore, the semi-discrete problem can be further rewritten as a first-order system for vh =
(uh, ∂tuh, θh)

T :

(3.7)

{
∂tvh =F (vh),

vh(0) = (u0h, u1h, θ0h)
T ,

where the right-hand side is given by

(3.8)

F ((uh, ∂tuh, θh)
T )

=
(
(Λh(uh, ∂tuh, θh))

−1 (Ah(q(θh))uh +Ah(β(θh))∂tuh − πh
(
2kW(θh)∂tu

2
h

)
−πh

(
2ℓ∇uh · ∂tuh

)
− fh

)
, ∂tuh, −κ∆hθh − νθh + πhQ(uh, ∂tuh, θh)

)T
.

Furthermore, system (3.7) has a locally Lipschitz continuous right-hand side (3.8). Indeed, Lips-
chitz continuity of the right-hand side follows by the fact that Vh is a finite-dimensional space in
which we can use inverse estimates (2.6a)–(2.6b).

Thus by the local version of the Picard–Lindelöf theorem, a unique solution (uh, θh) ∈
C2([0, T ];Vh)× C1([0, T ];Vh) of (3.6), supplemented with approximate initial data, exists on [0, t̃]
for some t̃ > 0. Since the initial errors in Lemma 3.1 in fact vanish, we have by the continuity and
the equivalence of norms on V 3

h that the errors euh and eθh still satisfy the bounds in (3.1) for a short
time. Therefore, we conclude that t∗h > 0. □

We also prove two uniform boundedness results on [0, t∗h] that will be useful in the next step of
the error analysis.

Lemma 3.3. Let the assumptions of Theorem 1.2 hold. Then the following bounds hold on [0, t∗h]:

∥uh∥L∞
t (L∞(Ω)) + ∥∇uh∥L∞

t (L∞(Ω)) + ∥∂tuh∥L∞
t (L∞(Ω)) ≲ 1

and

∥θh∥L∞
t (L∞(Ω)) + ∥θh∥L∞

t (W 1,d+δ(Ω)) + ∥∂tθh∥L∞
t (L3(Ω)) ≲ 1.

Proof. The statement follows by a repeated use of the stability properties of the Ritz projection
and inverse estimates (2.6a)–(2.6c). We have already shown in the previous proof that for s ∈ [0, t∗h]

∥uh(s)∥L∞(Ω) + ∥∂tuh(s)∥L∞(Ω) ≲ 1.

Further, by (2.5), we have

∥∇uh(s)∥L∞(Ω) ≲ ∥Rhu(s)∥W 1,∞(Ω) + ∥euh(s)∥W 1,∞(Ω) ≲ ∥u(s)∥W 1,∞(Ω) + h−d/6∥∆he
u
h(s)∥L2(Ω).

Similarly, for d+ δ ≤ 6, by (2.5), we have

∥θh(s)∥L∞(Ω) ≤∥Rhθ(s)∥W 1,d+δ(Ω) + ∥eθh(s)∥W 1,d+δ(Ω) ≲ ∥Rhθ(s)∥W 1,d+δ(Ω) + ∥∆he
θ
h(s)∥L2(Ω).

Lastly, inserting the equation (2.1) for θh, the stability of the L2-projection πh in L3, and the
relation ∆hRh = πh∆, we obtain

∥∂tθh(s)∥L3(Ω) ≲ ∥∆hθh∥L3(Ω) + ∥θh∥L3(Ω) + ∥Q(uh, ∂tuh, θh)∥L3(Ω)

≲ h−d/6∥∆he
θ
h(s)∥L2(Ω) + ∥πh∆θ∥L3(Ω) + ∥θh∥L3(Ω)

+ C(∥uh(s)∥L∞(Ω), ∥∂tuh(s)∥L∞(Ω), ∥θh(s)∥L∞(Ω)) ≲ 1 .

The definition of t∗h in (3.1) closes the proof. □

As a corollary of Lemma 3.3, on account of the assumptions made on the temperature-dependent
medium parameters, we also have the following uniform bounds.
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Corollary 3.4. Under the assumptions of Theorem 1.2, we have

∥β̃(θh)∥L∞
t (L∞(Ω)) + ∥q(θh)∥L∞

t (L∞(Ω))

+ ∥kW(θh)∥L∞
t (L∞(Ω)) + ∥kK(θh)∥L∞

t (L∞(Ω)) + ∥α(θh)∥L∞
t (L∞(Ω)) ≲ 1

on [0, t∗h].

In the next step of the a priori error analysis, we wish to derive a uniform estimate for (uh, θh)
that will allow us to show that

(uh(t
∗
h), ∂tuh(t

∗
h), θh(t

∗
h)) ∈ Uh,

which will lead us to the conclusion that (uh, θh) exists on [0, T ]. We focus first on the acoustic
subproblem and estimating euh = Rhu− uh.

4. Estimates for the semi-discrete wave subproblem

In this section, our aim is to derive an energy estimate for euh = Rhu − uh on [0, t∗h] with t∗h
defined in (3.1). Toward estimating euh, we observe first that the Ritz projection of u satisfies

(∂2tRhu, ϕh)L2 + β0a(∂tRhu, ϕh)

= (∆u, q(θ)ϕh)L2 + (∆∂tu, β̃(θ)ϕh)L2

+ (N (Rhu, ∂tRhu, ∂
2
tRhu,∇Rhu,∇∂tRhu, θ), ϕ) + (f, ϕh)L2 + (δu, ϕh)L2 ,

where the defect is given by

(δu, ϕh)L2

=(∂2tRhu− utt, ϕh)L2

− (N (u, ut, utt,∇u,∇ut, θ)−N (Rhu, ∂tRhu, ∂
2
tRhu,∇Rhu,∇∂tRhu, θ), ϕh)L2 .

We can estimate the defect using the following result.

Lemma 4.1. Under the assumptions of Theorem 1.2, the following estimate holds:

∥δu∥L2(L2(Ω)) ≤ C(∥u∥Xu)h
η.

Proof. The proof follows by rewriting the difference of the N terms as follows:

N (u, ut, utt,∇u,∇ut, θ)−N (Rhu, ∂tRhu, ∂
2
tRhu,∇Rhu,∇∂tRhu, θ)

= 2kW(θ)((u− Rhu)utt +Rhu(utt − ∂2tRhu)) + 2kW(θ)(ut − ∂tRhu)(ut + ∂tRhu)

+ 2kK(θ)((ut − ∂tRhu)utt + ∂tRhu(utt − ∂2tRhu))

+ 2ℓ∇(u− Rhu) · ∇ut + 2ℓ∇Rhu · ∇(ut − ∂tRhu)

and using the properties of the Ritz projection. Indeed, we have

∥2kW(θ)((u− Rhu)utt +Rhu(utt − ∂2tRhu)) + 2kW(θ)(ut − ∂tRhu)(ut + ∂tRhu)∥L2(L2(Ω))

≲ ∥kW(θ)∥L∞(L∞(Ω))∥u− Rhu∥L∞(L2(Ω))∥utt∥L2(L∞(Ω)) + ∥Rhu∥L∞(L∞(Ω))∥utt − ∂2tRhu∥L2(L2(Ω))

+ ∥kW(θ)∥L∞(L∞(Ω))∥ut − ∂tRhu∥L2(L4(Ω))∥ut + ∂tRhu∥L2(L4(Ω)).

Next,

∥2kK(θ)((ut − ∂tRhu)utt + ∂tRhu(utt − ∂2tRhu))∥L2(L2(Ω))

≲ ∥kK(θ)∥L∞(L∞(Ω))∥ut − ∂tRhu∥L∞(L2(Ω))∥utt∥L2(L∞(Ω)) + ∥∂tRhu∥L∞(L∞(Ω))∥utt − ∂2tRhu∥L2(L2(Ω)).

Finally,

∥ℓ∇(u− Rhu) · ∇ut + ℓ∇Rhu · ∇(ut − ∂tRhu)∥L2(L2(Ω))

≲ ∥∇(u− Rhu)∥L2(L2(Ω))∥∇ut∥L∞(L∞(Ω)) + ∥∇Rhu∥L∞(L∞(Ω))∥ut − ∂tRhu∥L2(L2(Ω)).

Combining the bounds and relying on (2.7) leads to the claim. □
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Hence, the error euh = Rhu− uh satisfies the following parabolic problem:

(∂2t e
u
h, ϕh)L2 + β0a(∂te

u
h, ϕh) = (Fu

h , ϕh)L2 ,

with the right-hand side given by

(4.1)

(Fu
h , ϕh)L2

=(δu, ϕh)L2 + (f − fh, ϕh)L2 + (∆u, q(θ)ϕh)L2 − (∆huh,Rh[q(θh)ϕh])L2

+ (∆ut, β̃(θ)ϕh)L2 − (∆h∂tuh,Rh[β̃(θh)ϕh])L2

+ (N (uh, ∂tuh, ∂
2
t uh,∇uh,∇∂tuh, θh)−N (Rhu, ∂tRhu, ∂

2
tRhu,∇Rhu,∇∂tRhu, θ), ϕh).

We wish to apply the maximal regularity estimate result of Lemma 2.1 to this problem. Toward
estimating the right-hand side, we can use Lemma 4.1 to bound δu. The next result will allow us
to estimate the difference of q and β̃ terms in (4.1).

Lemma 4.2. Under the assumptions of Theorem 1.2, the following bounds hold on [0, t∗h]:

(4.2)

sup
∥ϕh∥L2(Ω)=1

|(∆ut, β̃(θ)ϕh)L2 − (∆h∂tuh,Rh[β̃(θh)ϕh])L2 |

≲ hη + ∥∆h∂te
u
h∥L2(Ω)

(
∥β̃(θh)∥L∞(Ω) + o(1)

)
+ ∥β̃(θ)− β̃(θh)∥W 1,d+δ(Ω) ,

and

(4.3)

sup
∥ϕh∥L2(Ω)=1

|(∆u, q(θ)ϕh)L2 − (∆h∂tuh,Rh[q(θh)ϕh])L2 |

≲ hη + ∥∆he
u
h∥L2(Ω)

(
∥q(θh)∥L∞(Ω) + o(1)

)
+ ∥q(θ)− q(θh)∥W 1,d+δ(Ω),

where the hidden constants are independent of h and t∗h.

Proof. We only prove (4.2) as estimate (4.3) follows analogously. We first have the following
rewriting:

(∆ut, β̃(θ)ϕh)L2 − (∆h∂tuh,Rh[β̃(θh)ϕh])L2

= a(∂tuh,Rh[β̃(θh)ϕh])− a(ut, β̃(θ)ϕh)

= a(∂tuh − Rhut,Rh[β̃(θh)ϕh]) + a(Rhut,Rh[β̃(θh)ϕh])− a(Rhut, β̃(θ)ϕh)

+ a(Rhut − ut, β̃(θ)ϕh)

= a(∂te
u
h,Rh[β̃(θh)ϕh]) + a(Rhut,Rh[β̃(θh)ϕh − β̃(θ)ϕh]) + a(Rhut − ut, (I− Rh)β̃(θ)ϕh)

= − (∆h∂te
u
h,Rh[β̃(θh)ϕh])L2 − (∆hRhut,Rh[β̃(θh)ϕh − β̃(θ)ϕh])L2

+ a(Rhut − ut, (I− Rh)[β̃(θ)ϕh]),

where we used the orthogonality of Rh in the a-inner product. Thus, employing Lemma 2.3 yields

sup
∥ϕh∥L2(Ω)=1

|(∆ut, β̃(θ)ϕh)L2 − (∆h∂tuh,Rh[β̃(θh)ϕh])L2 |

≤ ∥∆h∂te
u
h∥L2(Ω)

(
∥β̃(θh)∥L∞(Ω) + o(1)

)
+ ∥∆∂tu∥L2(Ω)∥β̃(θ)− β̃(θh)∥W 1,d+δ(Ω)

+ hη∥ut∥Hη+1(Ω) sup
∥ϕh∥L2(Ω)=1

∥(I− Rh)[β̃(θ)ϕh]∥H1(Ω).

By the best approximation property,

∥(I− Rh)[β̃(θ)ϕh]∥H1(Ω) ≤ ∥(I− Ih)[β̃(θ)ϕh]∥H1(Ω) ≲ ∥β̃(θ)∥W η+1,∞(Ω)∥ϕh∥L2(Ω),

where the last estimate can be obtained analogously to the proof of [6, Lemma 5.2]. Thus, we have
(4.2). □
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Thanks to Lemma 4.2, we have

∥Fu
h∥L2

t (L
2(Ω))

≲C(∥u∥Xu)h
η + ∥∆h∂te

u
h∥L2

t (L
2(Ω))

(
∥β̃(θh)∥L∞

t (L∞(Ω)) + o(1)
)
+ ∥β̃(θ)− β̃(θh)∥L2

t (W
1,d+δ(Ω))

+ ∥∆he
u
h∥L2

t (L
2(Ω))

(
∥q(θh)∥L∞

t (L∞(Ω)) + o(1)
)
+ ∥q(θ)− q(θh)∥L2

t (W
1,d+δ(Ω))

+ ∥N (uh, ∂tuh, ∂
2
t uh,∇uh,∇∂tuh, θh)−N (Rhu, ∂tRhu, ∂

2
tRhu,∇Rhu,∇∂tRhu, θ∥L2

t (L
2(Ω)).

In the next step, we bound the difference of the N terms.

Lemma 4.3. Under the assumptions of Theorem 1.2, the following estimate holds on [0, t∗h]:
(4.4)

∥N (uh, ∂tuh, ∂
2
t uh,∇uh,∇∂tuh, θh)−N (Rhu, ∂tRhu, ∂

2
tRhu,∇Rhu,∇∂tRhu, θ)∥L2

t (L
2(Ω))

≤C(∥u∥Xu , ∥θ∥Xθ
)
{
∥kW(θ)− kW(θh))∥L2

t (L
∞(Ω)) + ∥kK(θ)− kK(θh))∥L2

t (L
∞(Ω))

+ ∥kW(θh)∥L∞
t (L∞(Ω))∥euh∥L2

t (L
∞(Ω)) + ∥∂teuh∥L2

t (L
2(Ω)) + ∥kK(θh)∥L∞

t (L∞(Ω))∥∂teuh∥L2
t (L

2(Ω))

+ ∥∇euh∥L2
t (L

2(Ω)) + ∥∇∂teuh∥L2
t (L

2(Ω))

}
+
{
∥kW(θh)uh∥L∞

t (L∞(Ω)) + ∥kK(θh) ∂tuh∥L∞
t (L∞(Ω))

}
∥∂2t euh∥L2

t (L
2(Ω)),

where the constant is independent of h and t∗h.

Proof. We first rewrite the difference of N terms as follows:

(4.5)

N (Rhu, ∂tRhu, ∂
2
tRhu,∇Rhu,∇∂tRhu, θ)−N (uh, ∂tuh, ∂

2
t uh,∇uh,∇∂tuh, θh)

= (kW(θ)− kW(θh))((Rhu)
2)tt + kW(θh)((Rhu)

2 − u2h)tt

+ (kK(θ)− kW(θh))((Rhut)
2)t + kK(θh)((Rhut)

2 − ∂tu
2
h)t + 2ℓ∇euh · ∇Rhut

+ 2ℓ∇uh · ∇∂teuh.
Using the fact that

((Rhu)
2 − u2h)tt

=2(Rhu− uh)∂
2
tRhu+ 2uh(∂

2
tRhu− ∂2t uh) + 2(∂tRhu− ∂tuh)(∂tRhu+ ∂tuh),

we have by Hölder’s inequality

∥(kW(θ)− kW(θh))((Rhu)
2)tt + kW(θh)((Rhu)

2 − u2h)tt∥L2
t (L

2(Ω))

≲ ∥kW(θ)− kW(θh))∥L2
t (L

∞(Ω))∥((Rhu)
2)tt∥L∞

t (L2(Ω))

+ ∥kW(θh)∥L∞
t (L∞(Ω))∥euh∥L2

t (L
∞(Ω))∥∂2tRhu∥L∞(L2(Ω)) + ∥kW(θh)uh∥L∞

t (L∞(Ω))∥∂2t euh∥L2
t (L

2(Ω))

+ ∥∂teuh∥L2
t (L

2(Ω))(∥∂tRhu∥L∞(L∞(Ω)) + ∥∂tuh∥L∞
t (L∞(Ω)))),

we note that ∥kW(θh)∥L∞
t (L∞(Ω)) ≲ 1 thanks to Corollary 3.4. Next, since

((Rhut)
2 − ∂tu

2
h)t = 2(Rhut − ∂tuh)∂

2
tRhu+ ∂tuh(∂

2
tRhu− utt)

we have

∥(kK(θ)− kK(θh))((Rhut)
2)t + kK(θh)((Rhut)

2 − ∂tu
2
h)t∥L2

t (L
2(Ω))

≲ ∥kK(θ)− kK(θh)∥L2
t (L

∞(Ω))∥((Rhut)
2)t∥L∞(L2(Ω))

+ ∥kK(θh)∥L∞
t (L∞(Ω))∥∇∂teuh∥L∞

t (L2(Ω))∥∂2tRhu∥L2(L3(Ω))

+ ∥kK(θh) ∂tuh∥L∞
t (L∞(Ω))∥∂2t euh∥L2

t (L
2(Ω))
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where we have relied on the embedding H1(Ω) ↪→ L6(Ω). We can further employ the fact that
∥kK(θh)∥L∞

t (L∞(Ω)) ≲ 1. Lastly, we can estimate the gradient terms on the right-hand side of (4.5)
as follows:

∥ℓ∇euh · ∇Rhut + ℓ∇uh · ∇∂teuh∥L2
t (L

2(Ω))

≲ ∥∇euh∥L2
t (L

2(Ω))∥∇Rhut∥L∞(L∞(Ω)) + ∥∇uh∥L∞
t (L∞(Ω))∥∇∂teuh∥L2

t (L
2(Ω)),

where we recall that ∥∇uh∥L∞
t (L∞(Ω)) ≲ 1 on [0, t∗h] thanks to Lemma 3.3. Combining the derived

bounds leads to (4.4). □

We have now all the ingredients to estimate Fu
h .

Lemma 4.4. Under the assumptions of Theorem 1.2, we have

∥Fu
h∥L2

t (L
2(Ω))

≤C(∥u∥Xu , ∥θ∥Xθ
)
{
hη + ∥kW(θ)− kW(θh))∥L2

t (L
∞(Ω)) + ∥kK(θ)− kK(θh))∥L2

t (L
∞(Ω))

+ ∥kW(θh)∥L∞
t (L∞(Ω))∥euh∥L2

t (L
∞(Ω)) + ∥∂teuh∥L2

t (L
2(Ω)) + ∥kK(θh)∥L∞

t (L∞(Ω))∥∂teuh∥L2
t (L

2(Ω))

+ ∥∇euh∥L2
t (L

2(Ω)) + ∥∇∂teuh∥L2
t (L

2(Ω)) + ∥∆he
u
h∥L2

t (L
2(Ω))

}
+ ∥q(θ)− q(θh)∥L2

t (W
1,d+δ(Ω)) + ∥β̃(θ)− β̃(θh)∥L2

t (W
1,d+δ(Ω))

+ ∥∆h∂te
u
h∥L2

t (L
2(Ω))

(
∥β̃(θh)∥L∞

t (L∞(Ω)) + o(1)
)

+
(
∥kW(θh)uh∥L∞

t (L∞(Ω)) + ∥kK(θh) ∂tuh∥L∞
t (L∞(Ω))

)
∥∂2t euh∥L2

t (L
2(Ω)).

Proof. The estimate follows by combining the results of Lemmas 4.1, 4.2, and 4.3. □

By employing the maximal regularity estimate of Lemma 2.1 with the choice wh = ∂te
u
h, we obtain

∥∂2t euh∥L2
t (L

2(Ω)) + ∥∆h∂te
u
h∥L2

t (L
2(Ω)) + ∥∇∂teuh∥L∞

t (L2(Ω)) ≲ ∥Fu
h∥L2

t (L
2(Ω)) + ∥∇∂teuh(0)∥L2(Ω).

Note that we can also bound ∥∆he
u
h∥L∞

t (L2(Ω)) by using

∥∆he
u
h∥L∞

t (L2(Ω)) ≲ ∥∆he
u
h(0)∥L2(Ω) + ∥∂t∆he

u
h∥L2

t (L
2(Ω)).

Since by our choice of discrete initial data the terms at zero vanish, we have

(4.6)
∥∂2t euh∥L2

t (L
2(Ω)) + ∥∆h∂te

u
h∥L2

t (L
2(Ω)) + ∥∆he

u
h∥L∞

t (L2(Ω))

+ ∥∇∂teuh∥L∞
t (L2(Ω)) ≲ ∥Fu

h∥L2
t (L

2(Ω)).

This bound will be combined with an analogous one for the semi-discrete temperature equation,
where we will look to either absorb the right-hand side terms by the left-hand side or handle them
via Grönwall’s inequality.

5. Estimates for the semi-discrete heat subproblem

In this section, we derive an estimate of eθh on [0, t∗h] by suitably testing the semi-discrete heat
subproblem. Recall that the heat equation in weak form is given by

(θt, ϕ)L2 + κa(θ, ϕ) + ν(θ, ϕ)L2 =(α(θ)(ζ1u
2 + ζ2u

2
t ), ϕ)L2

for all ϕ ∈ H1
0 (Ω). The semi-discrete version is then given by

(∂tθh, ϕh)L2 + κa(θh, ϕh) + ν(θh, ϕh)L2 = (α(θh)(ζ1u
2
h + ζ2∂tu

2
h), ϕh)L2

for all ϕh ∈ V θ
h . The Ritz projection of θ satisfies

(∂tRhθ, ϕh)L2 + κa(Rhθ, ϕh) + ν(Rhθ, ϕh)L2

=(α(Rhθ)(ζ1(Rhu)
2 + ζ2(∂tRhu)

2), ϕh)L2 + (δθ, ϕh)L2
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with the defect given by

(5.1)
(δθ, ϕh)L2 =(∂tRhθ − θt, ϕh)L2 + ν(Rhθ − θ, ϕh)L2

+ (α(θ)(ζ1u
2 + ζ2u

2
t )− α(Rhθ)(ζ1(Rhu)

2 + ζ2(∂tRhu)
2), ϕh)L2 .

Thus, the error eθh = Rhθ − θh solves the parabolic problem

(5.2) (∂te
θ
h, ϕh)L2 + κa(eθh, ϕh) + ν(eθh, ϕh)L2 = (Fθ

h, ϕh)L2

with the right-hand side

(Fθ
h, ϕh)L2 = (δθ, ϕh)L2 + (α(Rhθ)(ζ1(Rhu)

2 + ζ2(∂tRhu)
2)− α(θh)(ζ1u

2
h + ζ2∂tu

2
h), ϕh)L2 .

Looking at the estimate of the acoustic right-hand side Fu
h in Lemma 4.4, we see that we have

to further bound ∥q(θ) − q(θh)∥L2
t (W

1,d+δ(Ω)) and ∥β̃(θ) − β̃(θh)∥L2
t (W

1,d+δ(Ω)) in the course of the

analysis of the semi-discrete heat equation. We intend to rely on the properties of the temperature-
dependent speed of sound and sound diffusivity to conclude that

(5.3) ∥w(θ)− w(θh)∥L2
t (W

1,d+δ(Ω)) ≲ ∥θ − θh∥L2
t (W

1,d+δ(Ω)), w ∈ {q, β̃} ,
since ∥θ∥L∞

t (W 1,d+δ(Ω)), ∥θh∥L∞
t (W 1,d+δ(Ω)) ≤ C. Similarly, we will exploit the estimate

(5.4)

∥kW(θ)− kW(θh)∥L2
t (L

∞(Ω)) + ∥kK(θ)− kK(θh)∥L2
t (L

∞(Ω))

≲ ∥θ − θh∥L2
t (L

∞(Ω))

≲ ∥eθh∥L2
t (L

∞(Ω)) + ∥θ − Rhθ∥L2
t (L

∞(Ω))

since ∥θ∥L∞
t (L∞(Ω)), ∥θh∥L∞

t (L∞(Ω)) ≤ C. The error analysis of the heat equation should

lead to bounds on ∥eθh∥L∞
t (L∞(Ω)) and ∥eθh∥L∞

t (W 1,d+δ(Ω)) so that the terms ∥eθh∥L2
t (L

∞(Ω)) and

∥eθh∥L2
t (W

1,d+δ(Ω)) could be handled using Grönwall’s inequality. These can be obtained via the

embedding

∥eθh∥L∞
t (L∞(Ω)) + ∥eθh∥L∞

t (W 1,d+δ(Ω)) ≲ ∥∆he
θ
h∥L∞

t (L2(Ω))

and a suitable bound on ∥∆he
θ
h∥L∞

t (L2(Ω)).
To this end, we plan to employ Lemma 2.2 on the semi-discrete heat subproblem, provided

we have control of the right-hand side in the H1(0, t;L2(Ω)) norm. We thus need to estimate
∥Fθ

h∥H1
t (L

2(Ω)) via bounds on ∥Fθ
h∥L2

t (L
2(Ω)) and ∥∂tFθ

h∥L2
t (L

2(Ω)). We first estimate the defect term

within Fθ
h using the usual approximation properties of the Ritz projection. To improve the read-

ability, we postpone proofs of the next two lemmas to the Appendix.

Lemma 5.1. Under the assumptions of Theorem 1.2, the following estimate holds:

∥δθ∥L2
t (L

2(Ω)) + ∥∂tδθ∥L2
t (L

2(Ω)) ≲ C(∥u∥Xu , ∥θ∥Xθ
)hη+1.

Proof. The proof is given in Appendix A. □

This result enables us to estimate Fθ
h and ∂tFθ

h.

Lemma 5.2. Under the assumptions of Theorem 1.2, we have the following two estimates on [0, t∗h]

∥Fθ
h∥L2

t (L
2(Ω)) ≤C(∥u∥Xu , ∥θ∥Xθ

)
{
hη+1 + ∥euh∥L2

t (L
2(Ω)) + ∥∂teuh∥L2

t (L
2(Ω)) + ∥eθh∥L2

t (L
2(Ω))

}
,

∥∂tFθ
h∥L2

t (L
2(Ω)) ≤C(∥u∥Xu , ∥θ∥Xθ

)
{
hη+1 + ∥eθh∥L2

t (L
2(Ω)) + ∥∂teθh∥L2

t (L
2(Ω)) + ∥∆he

θ
h∥L2

t (L
2(Ω))

+ ∥euh∥L2
t (L

2(Ω)) + ∥∂teuh∥L2
t (L

2(Ω)) + ∥∇∂teuh∥L2
t (L

2(Ω))

+ ∥α(θh) ∂tuh∥L∞
t (L∞(Ω))∥∂2t euh∥L2

t (L
2(Ω))

}
,

where the constants are independent of h and t∗h.
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Proof. The proof is given in Appendix A. □

From (5.2) via parabolic estimate (2.4) with the choice wh = eθh, we have

(5.5)
∥∂teθh∥L∞

t (L2(Ω)) + ∥∆he
θ
h∥L∞

t (L2(Ω)) + ∥∇eθh∥L∞
t (L2(Ω))

≲ ∥Fθ
h∥H1

t (L
2(Ω)) + ∥∆he

θ
h(0)∥L2(Ω) + ∥∇eθh(0)∥L2(Ω) = ∥Fθ

h∥H1
t (L

2(Ω)).

on [0, t∗h]. In the next section, we will combine this bound with the results of Section 4 to complete
the proof Theorem 1.2.

6. Proof of the main result: A priori bounds for the coupled system

In this section, we prolong the existence of (uh, θh) to [0, T ] and prove the main theoretical result
of this work stated in Theorem 1.2.

6.1. Uniform bound for the wave-heat system. We first combine the two bounds for the
semi-discrete pressure and heat subproblems to obtain the following result.

Proposition 6.1. Let the assumptions of Theorem 1.2 hold. The following estimate holds:

(6.1)
∥∂2t euh∥L2

t (L
2(Ω)) + ∥∆h∂te

u
h∥L2

t (L
2(Ω)) + ∥∆he

u
h∥L∞

t (L2(Ω)) + ∥∂teuh∥L∞
t (H1(Ω))

+ ∥∆he
θ
h∥L∞

t (L2(Ω)) + ∥∂teθh∥L∞
t (L2(Ω)) ≤ C(∥u∥Xu , ∥θ∥Xθ

)hη

for t ∈ [0, t∗h], where the constant is independent of h and t∗h.

Proof. Adding the two derived bounds (4.6) and (5.5) for the semi-discrete acoustic and heat
subproblems leads to

∥∂2t euh∥L2
t (L

2(Ω)) + ∥∆h∂te
u
h∥L2

t (L
2(Ω)) + ∥∆he

u
h∥L∞

t (L2(Ω)) + ∥∂teuh∥L∞
t (H1(Ω))

+ ∥∆he
θ
h∥L∞

t (L2(Ω)) + ∥∂teθh∥L∞
t (L2(Ω)) + ∥∇eθh∥L∞

t (L2(Ω))

≲ ∥Fu
h∥L2

t (L
2(Ω)) + ∥Fθ

h∥H1
t (L

2(Ω)).

On account of Lemmas 4.4 and 5.2, we then find that

(6.2)

∥∂2t euh∥L2
t (L

2(Ω)) + ∥∆h∂te
u
h∥L2

t (L
2(Ω)) + ∥∆he

u
h∥L∞

t (L2(Ω)) + ∥∇∂teuh∥L∞
t (L2(Ω))

+ ∥∆he
θ
h∥L∞

t (L2(Ω)) + ∥∂teθh∥L∞
t (L2(Ω))

≲C(∥u∥Xu , ∥θ∥Xθ
)
{
hη + ∥kW(θ)− kW(θh))∥L2

t (L
∞(Ω)) + ∥kK(θ)− kK(θh))∥L2

t (L
∞(Ω))

+ ∥euh∥L2
t (L

∞(Ω)) + ∥∂teuh∥L2
t (L

2(Ω)) + ∥∇euh∥L2
t (L

2(Ω)) + ∥∇∂teuh∥L2
t (L

2(Ω))

+ ∥∆he
u
h∥L2

t (L
2(Ω)) + ∥eθh∥L2

t (L
2(Ω)) + ∥∂teθh∥L2

t (L
2(Ω))

}
+ ∥q(θ)− q(θh)∥L2

t (W
1,d+δ(Ω)) + ∥β̃(θ)− β̃(θh)∥L2

t (W
1,d+δ(Ω)) +R,

where we have introduced the following short-hand notation:

R = ∥∆h∂te
u
h∥L2

t (L
2(Ω))

(
∥β̃(θh)∥L∞

t (L∞(Ω)) + o(1)
)

+ ∥kW(θh) uh∥L∞
t (L∞(Ω))∥∂2t euh∥L2

t (L
2(Ω))

+ ∥kK(θh) ∂tuh∥L∞
t (L∞(Ω))∥∂2t euh∥L2

t (L
2(Ω))

+ ∥α(θh) ∂tuh∥L∞
t (L∞(Ω))∥∂2t euh∥L2

t (L
2(Ω)).

We first have, using (5.4),

∥kW(θ)− kW(θh))∥L2
t (L

∞(Ω)) + ∥kK(θ)− kK(θh))∥L2
t (L

∞(Ω))

≲ ∥∆he
θ
h∥L2

t (L
2(Ω)) + ∥θ − Rhθ∥L2

t (L
∞(Ω)).
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The approximation properties of the Ritz projection stated in (2.7) then yield

∥kW(θ)− kW(θh))∥L2
t (L

∞(Ω))∥+ ∥kK(θ)− kK(θh))∥L2
t (L

∞(Ω))

≲ ∥∆he
θ
h∥L2

t (L
2(Ω)) + hη∥θ∥L2(W η,∞(Ω)).

The difference of q and β̃ terms can be further estimated as follows:

∥q(θ)− q(θh)∥L2
t (W

1,d+δ(Ω)) + ∥β̃(θ)− β̃(θh)∥L2
t (W

1,d+δ(Ω))

≤C(∥θ∥L∞
t (W 1,d+δ(Ω)), ∥θh∥L∞

t (W 1,d+δ(Ω)))(∥θ − θh∥L2
t (W

1,d+δ(Ω))

≤C(∥θ∥L∞
t (W 1,d+δ(Ω)), ∥θh∥L∞

t (W 1,d+δ(Ω)))(∥eθh∥L2
t (W

1,d+δ(Ω)) + ∥θ − Rhθ∥L2
t (W

1,d+δ(Ω))),

and together with the discrete Sobolev embedding (2.5) (with d+ δ ≤ 6) it holds

∥eθh∥L2
t (W

1,d+δ(Ω)) ≤ C∥∆he
θ
h∥L2

t (L
2(Ω)).

Again by the approximation properties of the Ritz projection stated in (2.7), we then have (with
d+ δ ≥ 2)

∥q(θ)− q(θh)∥L2
t (W

1,d+δ(Ω)) + ∥β̃(θ)− β̃(θh)∥L2
t (W

1,d+δ(Ω))

≲ ∥eθh∥L2
t (W

1,d+δ(Ω)) + hη∥θ∥L2(W 1+η,d+δ(Ω)),

where we have also used the fact that ∥θ∥L∞
t (W 1,d+δ(Ω)), ∥θh∥L∞

t (W 1,d+δ(Ω)) ≲ 1.
It remains to discuss the terms within R. Observe that these terms cannot be handled using

Grönwall’s inequality. Instead we rely on the smallness of

∥β̃(θh)∥L∞
t (L∞(Ω)) + ∥kW(θh)uh∥L∞

t (L∞(Ω)) + ∥kK(θh)∂tuh∥L∞
t (L∞(Ω)) + ∥α(θh)∂tuh∥L∞

t (L∞(Ω))

to absorb them by the left-hand side of (6.2). This smallness can be achieved by the same com-
putations as in (3.3) and (3.4) for time t instead of 0, and performing the estimate (3.5) also for

β̃(θh) and α(θh)∂tuh. In fact, by the smallness condition (1.9) of the exact solution, we obtain

∥β̃(θh)∥L∞
t (L∞(Ω))+∥kW(θh)uh∥L∞

t (L∞(Ω))+∥kK(θh)∂tuh∥L∞
t (L∞(Ω))+∥α(θh)∂tuh∥L∞

t (L∞(Ω)) ≤ r+Chε0.

Then by decreasing r and h0, the e
u
h and eθh terms within R can be absorbed by the left-hand side.

An application of Grönwall’s inequality thus yields

∥∂2t euh∥L2
t (L

2(Ω)) + ∥∆h∂te
u
h∥L2

t (L
2(Ω)) + ∥∆he

u
h∥L∞

t (L2(Ω)) + ∥∇∂teuh∥L∞
t (L2(Ω))

+ ∥∆he
θ
h∥L∞

t (L2(Ω)) + ∥∂teθh∥L∞
t (L2(Ω)) ≤ C(∥u∥Xu , ∥θ∥Xθ

)hη,

as claimed. □

6.2. Prolonging the interval of existence. We are now ready for the final step in the well-
posedness and error analysis, which will complete the proof of the main theoretical result of this
work.

Proof of Theorem 1.2. Since the energy estimate (6.1) holds on [0, t∗h], we have

∥∆he
u
h(t

∗
h)∥L2(Ω) + ∥∂teuh(t∗h)∥H1(Ω) ≤ C(∥u∥Xu , ∥θ∥Xθ

)hη

∥∆he
θ
h(t

∗
h)∥L2(Ω) ≤ C(∥u∥Xu , ∥θ∥Xθ

)hη.

On account of η ≥ 1, we can then guarantee that

∥∆he
u
h(t

∗
h)∥L2(Ω) + ∥∂teuh(t∗h)∥H1(Ω) < C0h

1/2+ε,

∥∆he
θ
h(t

∗
h)∥L2(Ω) < C0h

1/2,

provided h0 is sufficiently small. Therefore, by the same estimate for time t∗h as in (3.3), (3.4), and
(3.5) (uh(t

∗
h), ∂tuh(t

∗
h), θh(t

∗
h)) ∈ Uh, where we recall that Uh was defined in (3.2). We can thus use

the same reasoning from before but starting at the time t = t∗h to prolong the existence of solutions
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beyond t∗h. The definition of t∗h in (3.1) then implies t∗h = T . Thus, the error estimate in (6.1) holds
on [0, T ]. This completes the proof. □

7. Numerical experiments

In this section, we explore fully discrete numerical approximations of the pressure-temperature
system (1.1) and present numerical examples in two-dimensional spatial domains. For all the
numerical examples of this section, we set Ω to be a bounded open domain of R2. We let {Th}h>0

be a family of quasi-uniform triangulations of Ω, which for a given meshsize h > 0, every element
K ∈ Th corresponds to a triangle of diameter hK ≤ h. For the spatial discretization, we make
use of the continuous Lagrangian finite element space Vh of polynomial degree η ≥ 1 introduced in
(1.6) for both the wave and heat equations.

To handle the nonlinearity arising in the functional N present in the wave equation in (1.1), we
used a fixed-point iteration method. In addition, to treat the nonlinear θ-dependent functions in
the heat equation, we use a semi-implicit discretization in time. We let τ > 0 be the timestep and
define tn := nτ as the discrete time points for all n ∈ N, and use the superscript notation (·)n to
denote time evaluations with t = tn. Regarding the time discretizations, given a time-dependent
function a = a(t), we consider the backward Euler scheme:

∂τa
n+1 =

1

τ

(
an+1 − an

)
and ∂2τa

n+1 =
1

τ2
(
an+1 − 2un + an−1

)
,(7.1)

and the second-order backward differentiation formulae (BDF2):

∂τa
n+1 =

1

τ

(
3
2a

n+1 − 2an + 1
2u

n−1
)
,

∂2τa
n+1 =

1

τ2
(
2an+1 − 5an + 4an−1 − an−2

)
.

(7.2)

We point out that in [1], it is shown that estimates as in Lemma 2.1 carry over to time discretization
with the implicit Euler and the BDF2 scheme. To facilitate the writing of the fixed-point iteration
method employed in the approximation of the wave equation, we define the following discrete
operators

δ1a
n :=

a
n Euler,

2an − 1
2a

n−1 BDF2,
δ2a

n :=

2an − an−1 Euler,

5an − 4an−1 + an−2 BDF2,

and the pair of constants (ς1, ς2) = (1, 1) for the implicit Euler method and (ς1, ς2) = (32 , 2) for

BDF2. Note that ς1 and ς2 are the numbers multiplying an+1 in the first and second time derivatives,
respectively, given for both time approximations. Then, with this notation, we can readily write

∂τa =
1

τ

(
ς1a

n+1 − δ1a
n
)

and ∂2τa =
1

τ2
(
ς2a

n+1 − δ2a
n
)
.(7.3)

Fully-discrete scheme. In order to perform the fixed-point iteration procedure, we first separate
the terms containing the second-order time derivative of u in (1.3). For this purpose, we introduce
two additional functionals N1 and N2, defined by

N1(θ, u, ut) =

{
1 + 2kW(θ)u Westervelt,

1 + 2kK(θ)ut Kuznetsov,
N2(θ, ut,∇u,∇ut) =

{
2kW(θ)u2t Westervelt,

2∇u · ∇ut Kuznetsov.

Observe that independent of the type of wave equation in (1.1), N1 corresponds to the nonlinear
coefficient of ∂2t u, while N2 contains the remaining non-linear terms of N .

Next, given unh, u
n−1
h , θnh ∈ Vh, and eventually un−2

h , θn−1
h ∈ Vh (cf. (7.2)), the fixed-point iteration

procedure to update the wave equation from time tn to tn+1, is established as follows. We define
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auxiliary variables u
(i)
h ∈ Vh with i ∈ N, and set u

(0)
h = unh. Then, given u

(i)
h , the iterative process

continues by finding u
(i+1)
h ∈ Vh such that(

N (i)
1 ς2u

(i+1)
h , ϕh

)
L2 + τ2a

(
u
(i+1)
h , q(θnh)ϕh

)
+ τa

(
ς1u

(i+1)
h , β(θnh)ϕh

)
=

(
N (i)

1 δ2u
n
h, ϕh

)
L2 + τa

(
δ1u

n
h, β(θ

n
h)ϕh

)
− τ2

(
N (i)

2 , ϕh
)
L2 + τ2(fn+1

h , ϕh)L2 ,
(7.4)

for all ϕh ∈ Vh, where the first and second time derivatives have been written using (7.3) to separate
the variables arising in the iterative process from those of the discrete unknown at previous time
steps, and

N (i)
1 = N1

(
θnh , u

(i)
h , 1τ

(
ς1u

(i)
h − δ1u

n
h

))
,

N (i)
2 = N2

(
θnh ,

1
τ

(
ς1u

(i)
h − δ1u

n
h

)
,∇u(i)h , 1τ∇

(
ς1u

(i)
h − δ1u

n
h

))
.

The stopping criterion of the fixed-point iteration is set as follows:

∥u(i+1)
h − u

(i)
h ∥L2(Ω)

∥u(i+1)
h ∥L2(Ω)

< tol,

and the unknown is updated by setting un+1
h = u

(i+1)
h . For the Pennes bioheat equation, we

discretize the equation in a semi-implicit fashion, and we solve for θn+1
h ∈ Vh such that

(7.5)
(ς1θ

n+1
h , ϕh)L2 + τκ a(θn+1

h , ϕh) + τν(θn+1
h , ϕh)L2

= (δ1θ
n
h , ϕh)L2 + τ

(
Q(un+1

h , ∂tu
n+1
h , θnh), ϕh

)
L2 ,

for all ϕh ∈ Vh. All numerical examples in this section have been implemented in Python using
the open source finite element library FEniCSx [2]. For the fixed-point iteration method, we use
the tolerance tol = 10−10. In addition, we remark that in order to properly initialize the BDF2
method, we perform the first time step with the implicit Euler method. The codes to reproduce
the results are available at

https://github.com/juliocareaga/wave-heat

7.1. Example 1: Accuracy tests. To determine the numerical errors produced by our numerical
scheme (7.4)–(7.5) along with time discretizations (7.1) or (7.2), we consider the unit square domain
Ω = [0, 1]2, and manufactured solutions uex = uex(x, t) and θex = θex(x, t). Then, the resulting
terms arising after replacing u = uex and θ = θex in (1.1) are supplemented to the wave and heat
equations through the respective source terms:

fex(x, t) = ∂2t uex − c2(θex)∆uex − β(θex)∆(∂tuex)

+ N
(
uex, ∂tuex, ∂

2
t uex,∇uex,∇(∂tuex), θex

)
,

gex(x, t) = ∂tθex − κ∆θex + νθex −Q(uex, ∂tuex, θex).

We note that the forcing term gex was originally not present in the second equation of (1.1) and is
introduced only for numerical testing. However, one could easily extend the error analysis above
to this case, but we refrain from giving any details here. Given λj , Aj > 0 for j ∈ {1, 2}, we define
the following smooth manufactured solutions:

uex(x1, x2, t) = A1 sin(2πx1) sin(2πx2)exp(λ1t),(7.6)

θex(x1, x2, t) = A2 sin(4πx1) sin(4πx2)exp(−λ2t),(7.7)

https://github.com/juliocareaga/wave-heat
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Figure 1. Total error (7.10) computed from the numerical scheme making use of
the implicit Euler method with η = 1, and BDF2 method with η = 2, and η = 3,
respectively. The errors are ploted against the meshsize h, for the common final
time T = 1 s and timestep τ = 1/128 s = 0.0078125 s. The manufactured solutions
are uex (cf. (7.6)) and θex (cf. (7.7)) with A1 = 1, A2 = 10−4, λ1 = 1, and λ2 = 1/2.

which satisfy the zero Dirichlet boundary conditions uex|∂Ω = θex|∂Ω = 0. In addition, we set the
discrete initial conditions as

u0,h = Rh[uex(x1, x2, 0)], u1,h = Rh[∂tuex(x1, x2, 0)], θ0,h = Rh[θex(x1, x2, 0)],

for all (x1, x2) ∈ Ω. For the error computations, we use a second order polynomial for the speed
of sound (truncated polynomial function for liver tissue in [5]) and respective sound diffusivity
function:

c(θ) = 1529.3 + 1.6856 (θ +Θa) + 6.1131× 10−2 (θ +Θa)
2,

β(θ) =
2α̃

ω2
c3(θ),

with Θa = 37 ◦C being the ambient temperature, α̃ = 4.5 × 10−6 f̂ Npm−1 and ω = 2πf̂ , for
f̂ = 1Hz. Furthermore, we set the coefficient functions kW and kK as

kW(θ) =
6

ρac2(θ)
, kK(θ) =

5

c2(θ)
,(7.8)

where B/(2A) = 5 (cf. (1.2)). For the heat equation, we set the constants κ = 1 and ν = 10−5, the
absorbed energy function

Q(θ, u, ut) =


1

2ρa

(
α̃

c(θ)
u2 +

2b(θ)

c4(θ)
u2t

)
Westervelt,

ρaα̃

c(θ)
u2 Kuznetsov,

(7.9)

with ρa = 1050 kg/m3. Given τ > 0 and t = tn+1, we define the total error associated with our
coupled numerical scheme at the time t = tn+1 as follows

Eτ (t
n+1) =

∥∥∇(
∂tu(t

n+1)− ∂τu
n+1
h

)∥∥
L2(Ω)

+
∥∥∂tθ(tn+1)− ∂τθ

n+1
h

∥∥
L2(Ω)

(7.10)

+
∥∥∇(θ(tn+1)− θn+1

h )
∥∥
L2(Ω)

,

for all n ≥ 0. Figure 1 shows the total error committed by our fully discrete numerical scheme for
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Figure 2. (a) Initial pressure u0 = u0(x1, x2) used in Example 2, and (b) source
function f = f(x1, x2, t) at t = 0 employed in Example 3. The continuous red lines
correspond to the respective functions at x2 = 0 for 0 ≤ x1 ≤ r0, and the red-
dashed lines stand for the functions’ plot at the angles −π/4 and π/4 respectively.
The black-dashed contour coincide with the boundary ∂Ω.

the two time approximations, implicit Euler and BDF2, with polynomial degrees η = 1, 2, 3, and
for the Westervelt and Kuznetsov wave equations. For the two wave equations, the results show
that in both cases, implicit Euler with η = 1, and BDF2 with η = 2, the orders of convergence are
in agreement with what is predicted by Theorem 1.2. For the case of BDF2 with η = 3, we observe
that the errors slopes tend to η = 3 until the order of convergence gets deteriorated due to the fact
that τ overcomes h in the error O(τ2 + h3). The later, explains the generation of a plateau as h
reaches the smallest values.

7.2. Example 2: Westervelt wave equation (initial excitation). We let now Ω be composed
by the union of the square region [−0.03, 0.03]×[−0.04, 0.04] and the circular segment between −π/4
and π/4 of the circle centered at the origin with radius 0.05m. Therefore, Ω is not a polygonal
domain and in this example (and in Example 3), we partially step aside from our theoretical
framework. However, we still consider a polygonal approximation of the curved boundary of Ω to
set the regular triangulation Th. The domain, shown in both plots of Figure 2 is delimited by the
black-dashed lines accounting for ∂Ω. For this example, we simulate the Westervelt equation with
manufactured initial condition described by the functions (in polar coordinates)

g0(r, ϑ) = 106 cos
(
7
4ϑ

)
3π
r0
r exp

(
− 3π

r0
r
)
sin

(
15π
r0
r
)
,

g1(r, ϑ) = 106 cos
(
7
4ϑ

)
3π
r0
r exp

(
− 3π

r0
r
)
cos

(
15π
r0
r
)
,

where r is the radius measured from the origin and ϑ is the angle with respect to the x1-axis, and
0.048m = r0 < 0.05m. Then, at t = 0, we set u and ∂tu as follows(

u0(r, ϑ), u1(r, ϑ)
)
=

{
(g0(r, ϑ), g1(r, ϑ)) if − 2π

7 ≤ ϑ ≤ 2π
7 , 0 ≤ r ≤ r0,

(0, 0) otherwise in Ω,
(7.11)

and the zero initial temperature θ0 ≡ 0. Figure 2a displays the plot of u0 as a function of (x1, x2)
in Ω. We remark that the initial conditions are built in order to satisfy the zero Dirichlet bound-
ary conditions and being continuous functions within the domain. The initial wave amplitude is
maximal at the x1-axis, when ϑ = 0 (see the continuous red line in Figure 2) and it decreases to
zero towards the lines ϑ = ±2π/7 and r = 0.

For the coefficient functions in (1.1), we set the temperature-dependent speed of sound as the
fifth order polynomial function modeling liver tissue in [5]

c(θ) = 1529.3 + 1.6856 (θ +Θa) + 6.1131× 10−2 (θ +Θa)
2

− 2.2967× 10−3 (θ +Θa)
3 + 2.2657× 10−5 (θ +Θa)

4 − 7.1795× 10−8 (θ +Θa)
5.
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uhuh uh

t = 200τ t = 300τ t = 400τ

uhuh uh

t = 10τ t = 50τ t = 100τ

1

Figure 3. Example 2: Snapshots of the discrete pressure uh = uh(x1, x2) computed
with the Westervelt wave equation in (1.1), initial coditions (7.11) and θ0 ≡ 0, and
setting the source term f = 0. The time step is τ = 10−7 s and η = 1, and the time
approximation is by the BDF2 method.

In addition, the corresponding sound diffusivity β and kW function are taken as in Example 1
after setting the frequency f̂ = 100 kHz. No source term is included in the wave equation in this
example, i.e., f ≡ 0. The parameters used in the heat equation, which are related to liver tissue as
the ambient ’a’, and blood ’b’ are taken from [5, Table 3] to be

βa = 6kg3m−4 s−2, ρa = 1050 kgm−3, ρb = 1030 kgm−3, Θa = 37 ◦C

Ca = 3600 J kgK−1, Cb = 3620 J kgK−1, κa = 0.512Wm−1K−1,

and the constant diffusion κ and parameter ν are respectively given by

κ =
κa
ρaCa

, ν =
ρbCb

ρaCa
.

For the absorbed acoustic energy functional, we use the definition given in (7.9).
For the numerical simulations, we use the BDF2 scheme with τ = 10−7 s together with a poly-

nomial approximation of degree η = 1, linear piecewise polynomials, and set T = 4 × 10−5 s. The
meshsize is set to h = 7.6 × 10−4m and the number of elements of the used mesh is 38912. In
Figure 3, we show the simulated pressure profiles unh at n = 10, 50, 100, 200 and 300. The combined
effect of having the initial time derivative u1, and u0 given by (7.11) is that the wave amplitude
reaches its maximum towards the focal point instead of directly dissipating, and travels towards
the left boundary. Furthermore, it can be clearly seen that initially the acoustic wave traveling in
the direction of the x1-axis gets reflected from the curved boundary. The discrete temperature, on
the other hand, is presented in Figure 4, in which it can be observed the heating effect that the
ultrasound wave has on the focal area, where the temperature reaches its maximum.

7.3. Example 3: Kuznetsov wave equation (source excitation). In this example, we explore
the case of a high frequency excitation due to a source term on the wave equation for the Kuznetsov
equation. Unlike Example 2, the unknown u represents now the acoustic velocity potential. Under
the same conditions of Example 2, meaning the same domain, parameters and coefficient functions
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θhθh θh

t = 200τ t = 300τ t = 400τ

θhθh θh

t = 10τ t = 50τ t = 100τ

1

Figure 4. Example 2: Snapshots of the discrete temperature θh = θh(x1, x2) com-
puted with the Westervelt wave equation in (1.1), initial coditions (7.11) and θ0 ≡ 0,
and setting the source term f = 0. The time step is τ = 10−7 s and η = 1, and the
time approximation is by the BDF2 method.

(with kK as in (7.8)), we set the source term function similarly as the initial conditions in Example 2
through the function (in polar coordinates)

f0(r, ϑ, t) = 108 cos
(
7
4ϑ

)
1
r0
r
(
exp

(
− 40r/r0

)
− exp

(
− 40

))
cos(ωt),(7.12)

where the pair (r, ϑ) corresponds to the polar coordinates relative to (x1, x2) ∈ Ω, and r0 = 0.048m.
Then, we define the source term function as follows:

f(r, ϑ, t) =

{
f0(r, ϑ, t) if − 2π

7 ≤ ϑ ≤ 2π
7 , 0 ≤ r ≤ r0,

0 otherwise in Ω.

Figure 2b) shows the plot of function f at the time t = 0. Varying time t, the described source

term oscillates with angular frequency ω = 2πf̂ , with f̂ = 100 kHz. This function is intended to
mimic the effect of having an excitation due to Neumann boundary conditions, but keeping the
unknowns to zero at the boundaries. To perform this numerical example, we use the BDF2 method
with τ = 10−7 s, T = 4× 10−5 s, linear elements with η = 1, and the same mesh as in Example 1.

In Figure 5, we show snapshots of the discrete solution uh (top row), and discrete temperature
(bottom row) at three times tn with n = 200, 300 and 400. Unlike the previous example, in
which the wave is induced by the initial condition, in this case the oscilations of the source term
continuously drive the wave. Then, sequential peaks of uh reach the focal area as time evolves.
The approximated temperature θh is presented in Figure 5, which is in the order of magnitude of
10−9 ◦C. The later can be explained due to the reduced magnitude of uh, which directly influences
the strength of the absorbed energy function Q.
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θhθh θh
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1

Figure 5. Example 2: Snapshots of the discrete acoustic velocity potential uh =
uh(x1, x2) (first row) and discrete temperature θh = θh(x1, x2) (second row), at
three time points, computed with the Kuznetsov wave equation in (1.1) with zero
initial conditions and source term f given by (7.12). The time step is τ = 10−7 s
and η = 1, and the time approximation is by the BDF2 method.

Appendix A. Postponed proofs

In this section, we finally give the proofs from Sections 2.4 and 5 on the bound of the Ritz
projection and the defects from the error analysis of the heat part.

Proof of Lemma 2.3. We add and subtract µ(ψh)ϕh to obtain

∥Rh[µ(ψh)ϕh]∥L2(Ω) ≤ ∥µ(ψh)ϕh∥L2(Ω) + ∥(I− Rh)[µ(ψh)ϕh]∥L2(Ω),

which yields

∥Rh[µ(ψh)ϕh]∥L2(Ω) ≤ ∥µ(ψh)∥L∞(Ω)∥ϕh∥L2(Ω) + ∥(I− Rh)[µ(ψh)ϕh]∥L2(Ω).

To estimate the second term on the right-hand side, we note that

∥(I− Rh)[µ(ψh)ϕh]∥L2(Ω) ≲ h∥(I− Rh)[µ(ψh)ϕh]∥H1(Ω) ≲ h∥(I− Ih)[µ(ψh)ϕh]∥H1(Ω).

Using the standard interpolation estimate, we obtain

h2∥(I− Ih)(µ(ψh)ϕh)∥2H1(Ω) ≤ C
∑
K

(
hη+1|µ(ψh)ϕh|Hη+1(K)

)2
.

We use that on each cell ϕh is a polynomial of degree η, together with the inverse estimate in [4,
Lemma (4.5.3)], to derive

hη+1|µ(ψh)ϕh|Hη+1(K) ≲ hη+1
η+1∑
j=1

|µ(ψh)|W j,∞(K)|ϕh|Hη+1−j(K) ≲ |ϕh|L2(K)

η+1∑
j=1

hj |µ(ψh)|W j,∞(K).

The observation that

hj |µ(ψh)|W j,∞(K) ≲
j∑

ℓ=1

hℓ∥∇ψh∥ℓL∞(K)
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allows us to conclude

h2∥(I− Ih)(µ(ψh)ϕh)∥2H1(Ω) ≤ C
∑
K

∥ϕh∥2L2(K)

η+1∑
j=1

h2j∥∇ψh∥2jL∞(K) ≤ C∥ϕh∥2L2(Ω)

η+1∑
j=1

(
h∥∇ψh∥L∞(Ω)

)2j
.

Finally, we employ

h∥∇ψh∥L∞(Ω) ≲ hδ/(d+δ)∥∇ψh∥W 1,d+δ(Ω)

to obtain the claim. □

Next, we turn to the defect defined in (5.1).

Proof of Lemma 5.1. (a) We have the rewriting

(δθ, ϕh)L2 =(∂tRhθ − θt, ϕh)L2 + ν(Rhθ − θ, ϕh)L2 + ((α(θ)− α(Rhθ))(ζ1u
2 + ζ2u

2
t ), ϕh)L2

+ (α(Rhθ)(ζ1(u− Rhu)(u+Rhu) + ζ2(ut − ∂tRhu)(ut + ∂tRhu)), ϕh)L2 .

The statement then follows by the approximation properties of the Ritz projection.
(b) For the time derivative of the defect, we note that

(∂tδ
θ, ϕh)L2 =(∂2tRhθ − θtt, ϕh)L2 + ν(∂tRhθ − θt, ϕh)L2

+ (α′(θ)θt(ζ1u
2 + ζ2u

2
t )− α′(Rhθ)∂tRhθ(ζ1(Rhu)

2 + ζ2(∂tRhu)
2), ϕh)L2

− 2(α(θ)ut(ζ1u+ ζ2utt)− α(Rhθ)∂tRhu(ζ1Rhu+ ζ2∂
2
tRhu), ϕh)L2 .

We have the following rewriting:

(A.1)

(α′(θ)θt(ζ1u
2 + ζ2u

2
t )− α′(Rhθ)∂tRhθ(ζ1(Rhu)

2 + ζ2(∂tRhu)
2), ϕh)L2

=((α′(θ)− α′(Rhθ))θt(ζ1u
2 + ζ2u

2
t ), ϕh)L2

+ (α′(Rhθ)(θt − ∂tRhθ)(ζ1(Rhu)
2 + ζ2(∂tRhu)

2), ϕh)L2

+ (α′(Rhθ)∂tRhθ(ζ1(uh − Rhu)(uh +Rhu) + ζ2(∂tuh − ∂tRhu)(∂tuh + ∂tRhu)), ϕh)L2 .

On account of the local Lipschitz continuity of α′, we have

∥(α′(θ)− α′(Rhθ))θt(ζ1u
2 + ζ2u

2
t )∥L2(L2(Ω))

≲ ∥α′(θ)− α′(Rhθ)∥L∞(L2(Ω))∥θt∥L2(L∞(Ω))(∥u∥2L∞(L∞(Ω)) + ∥ut∥2L∞(L∞(Ω)))

≲ ∥θ − Rhθ∥L∞(L2(Ω))∥θt∥L2(L∞(Ω))(∥u∥2L∞(L∞(Ω)) + ∥ut∥2L∞(L∞(Ω)))

and we can estimate the other terms on the right-hand side of (A.1) in an analogous manner.
Similarly, we have the rewriting

(α(θ)ut(ζ1u+ ζ2utt)− α(Rhθ)∂tRhu(ζ1Rhu+ ζ2∂
2
tRhu), ϕh)L2

=((α(θ)− α(Rhθ))ut(ζ1u+ ζ2utt), ϕh)L2 + (α(Rhθ)(ut − ∂tRhu)(ζ1u+ ζ2utt), ϕh)L2

+ (α(Rhθ)∂tRhu(ζ1(u− Rhu) + ζ2(utt − ∂2tRhu)), ϕh)L2

and we can proceed as above to arrive at the claim. □

The last estimate deals with the right-hand side in the error equation of the heat problem.

Proof of Lemma 5.2. We use the following rewriting:

(Fθt
h , ϕh)L2 = (δθ, ϕh)L2 + ((α(Rhθ)− α(θh))(ζ1(Rhu)

2 + ζ2(∂tRhu)
2)), ϕh)L2

+ (α(θh)(ζ1(Rhu− uh)(Rhu+ uh) + ζ2(∂tRhu− ∂tuh)(∂tRhu+ ∂tuh)), ϕh)L2 .

We further have
∥(α(Rhθ)− α(θh))(ζ1(Rhu)

2 + ζ2(∂tRhu)
2))∥L2

t (L
2(Ω))

≲ ∥eθh∥L2
t (L

2(Ω))∥ζ1(Rhu)
2 + ζ2(∂tRhu)

2∥L∞
t (L∞(Ω)),
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where we have relied on

∥α(Rhθ)− α(θh)∥L2
t (L

2(Ω)) ≲ ∥Rhθ − θh∥L2
t (L

2(Ω))

for ∥θh∥L∞
t (L∞(Ω)) ≲ 1. Similarly,

∥α(θh)(ζ1(Rhu− uh)(Rhu+ uh) + ζ2(∂tRhu− ∂tuh)(∂tRhu+ ∂tuh))∥L2
t (L

2(Ω))

≲ ∥α(θh)∥L∞
t (L∞(Ω))(∥euh∥L2

t (L
2(Ω)) + ∥∂teuh∥L2

t (L
2(Ω)))(∥uh∥H1

t (L
2(Ω)) + ∥Rhu∥H1

t (L
2(Ω))).

The claim then follows by Lemma 5.1 and the properties of the Ritz projection.
We now tackle the estimate of ∂tFθ

h. Note that

(∂tFθ
h, ϕh)L2 = (∂tδ

θ, ϕh)L2 + I,
where

I =(α′(Rhθ)∂tRhθ(ζ1(Rhu)
2 + ζ2(∂tRhu)

2) + 2α(Rhθ)∂tRhu(ζ1Rhu+ ζ2∂
2
tRhu), ϕh)L2

− (α′(θh)∂tθh(ζ1u
2
h + ζ2∂tu

2
h) + 2α(θh)∂tuh(ζ1uh + ζ2∂

2
t uh), ϕh)L2 .

We can rewrite I as follows:

I =(α′(Rhθ)∂tRhθ(ζ1(Rhu)
2 + ζ2(∂tRhu)

2)− α′(θh)∂tθh(ζ1u
2
h + ζ2∂tu

2
h), ϕh)L2

+ 2(α(Rhθ)∂tRhu(ζ1Rhu+ ζ2∂
2
tRhu)− α(θh)∂tuh(ζ1uh + ζ2∂

2
t uh), ϕh)L2 .

We next further rewrite the two difference terms. First,

(α′(Rhθ)∂tRhθ(ζ1(Rhu)
2 + ζ2(∂tRhu)

2)− α′(θh)∂tθh(ζ1u
2
h + ζ2∂tu

2
h), ϕh)L2

=((α′(Rhθ)− α′(θh))∂tRhθ(ζ1(Rhu)
2 + ζ2(∂tRhu)

2), ϕh)L2

+ (α′(θh)(∂tRhθ − ∂tθh)(ζ1(Rhu)
2 + ζ2(∂tRhu)

2), ϕh)L2

+ ζ1(α
′(θh)∂tθh(Rhu− uh)(Rhu+ uh), ϕh)L2

+ ζ2(α
′(θh)∂tθh(∂tRhu− ∂tuh)(∂tRhu+ ∂tuh)), ϕh)L2 :=

4∑
i=1

(Ii, ϕh)L2 .

We have

∥I1∥L2
t (L

2(Ω))

= ∥(α′(Rhθ)− α′(θh))∂tRhθ(ζ1(Rhu)
2 + ζ2(∂tRhu)

2)∥L2
t (L

2(Ω))

≲ ∥α′(Rhθ)− α′(θh)∥L2
t (L

2(Ω))∥∂tRhθ∥L∞(L∞(Ω))(∥Rhu∥2L∞(L∞(Ω)) + ∥∂tRhu∥2L∞(L∞(Ω)))

≲ ∥θ∥Xθ
∥u∥2Xu

∥eθh∥L2
t (L

2(Ω)).

Secondly,

∥I2∥L2
t (L

2(Ω)) = ∥α′(θh)(∂tRhθ − ∂tθh)(ζ1(Rhu)
2 + ζ2(∂tRhu)

2)∥L2
t (L

2(Ω))

≲ ∥α′(θh)∥L∞
t (L∞(Ω))∥∂teθh∥L2

t (L
2(Ω))(∥Rhu∥2L∞(L∞(Ω)) + ∥∂tRhu∥2L∞(L∞(Ω))).

Thirdly,

∥I3∥L2
t (L

2(Ω)) = ∥ζ1α′(θh)∂tθh(Rhu− uh)(Rhu+ uh)∥L2
t (L

2(Ω))

≲ ∥∂tθh∥L∞
t (L3(Ω))∥euh∥L2

t (L
6(Ω)) ≲ ∥∂tθh∥L∞

t (L3(Ω))∥∇euh∥L2
t (L

2(Ω)).

Next,

∥I4∥L2
t (L

2(Ω)) = ∥ζ2α′(θh)∂tθh(∂tRhu− ∂tuh)(∂tRhu+ ∂tuh)∥L2
t (L

2(Ω))

≲ ∥∂tθh∥L∞
t (L3(Ω))∥∂teuh∥L2

t (L
6(Ω)) ≲ ∥∂tθh∥L∞

t (L3(Ω))∥∇∂teuh∥L2
t (L

2(Ω)).
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Similarly, we have the following rewriting:

2(α(Rhθ)∂tRhu(ζ1Rhu+ ζ2∂
2
tRhu)− α(θh)∂tuh(ζ1uh + ζ2∂

2
t uh), ϕh)L2

=2((α(Rhθ)− α(θh))∂tRhu(ζ1Rhu+ ζ2∂
2
tRhu), ϕh)L2

+ 2(α(θh)(∂tRhu− ∂tuh)(ζ1Rhu+ ζ2∂
2
tRhu), ϕh)L2

+ 2(α(θh)∂tuh(ζ1(Rhu− uh) + ζ2(∂
2
tRhu− ∂2t uh)), ϕh)L2

:=

7∑
i=5

(Ii, ϕh)L2 .

Then

∥I5∥L2
t (L

2(Ω)) = ∥2(α(Rhθ)− α(θh))∂tRhu(ζ1Rhu+ ζ2∂
2
tRhu)∥L2

t (L
2(Ω))

≲ ∥eθh∥L2
t (L

∞(Ω))∥∂tRhu∥L∞
t (L∞(Ω))(∥Rhu∥L2(L2(Ω)) + ∥∂2tRhu∥L2(L2(Ω))).

Next,

∥I6∥L2
t (L

2(Ω)) = ∥2α(θh)(∂tRhu− ∂tuh)(ζ1Rhu+ ζ2∂
2
tRhu)∥L2

t (L
2(Ω))

≲ ∥α(θh)∥L∞
t (L∞(Ω))∥∂teθh∥L∞

t (L6(Ω))(∥Rhu∥L2(L3(Ω)) + ∥∂2tRhu∥L2(L3(Ω))).

Finally,

∥I7∥L2
t (L

2(Ω)) = ∥2α(θh)∂tuh(ζ1(Rhu− uh) + ζ2(∂
2
tRhu− ∂2t uh))∥L2

t (L
2(Ω))

≲ ∥α(θh) ∂tuh∥L∞
t (L∞(Ω))(∥euh∥L2

t (L
2(Ω)) + ∥∂2t euh∥L2

t (L
2(Ω))).

Combining the derived bounds yields the desired result. □
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