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IMPROVED ERROR ESTIMATES FOR LOW-REGULARITY
INTEGRATORS USING SPACE-TIME BOUNDS

MAXIMILIAN RUFF

Abstract. We prove optimal convergence rates for certain low-regularity
integrators applied to the one-dimensional periodic nonlinear Schrödinger
and wave equations under the assumption of H1 solutions. For the
Schrödinger equation we analyze the exponential-type scheme proposed
by Ostermann and Schratz in 2018, whereas in the wave case we treat
the corrected Lie splitting proposed by Li, Schratz, and Zivcovich in
2023. We show that the integrators converge with their full order of one
and two, respectively. In this situation only fractional convergence rates
were previously known. The crucial ingredients in the proofs are known
space-time bounds for the solutions to the corresponding linear problems.
More precisely, in the Schrödinger case we use the L4 Strichartz inequal-
ity, and for the wave equation a null form estimate. To our knowledge,
this is the first time that a null form estimate is exploited in numerical
analysis. We apply the estimates for continuous time, thus avoiding
potential losses resulting from discrete-time estimates.

1. Introduction

Due to their importance as a model problem in mathematical physics, the
nonlinear Schrödinger and wave equations have been intensively studied in
the past decades, both analytically and numerically. In this work we study
their numerical time integration in the one-dimensional cases. We treat the
semilinear Schrödinger equation

i∂tu+ ∂2
xu = µ|u|2u, (t, x) ∈ [0, T ] × T,

u(0) = u0 ∈ H1(T),
(1.1)

where we allow for both signs µ ∈ {±1}. Our second problem is the semilinear
wave equation

∂2
t u− ∂2

xu = g(u), (t, x) ∈ [0, T ] × T,
u(0) = u0 ∈ H1(T),

∂tu(0) = v0 ∈ L2(T),
(1.2)

with a general nonlinearity g ∈ C2(R,R). Our regularity assumptions on the
initial data are natural in view of the energy conservation laws.
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For the time discretization of dispersive or hyperbolic equations such as
(1.1) and (1.2), low-regularity integrators have recently gained a lot of atten-
tion in the literature. See, e.g., [2, 3, 4, 9, 11, 12, 13, 14] for some important
contributions. In low-regularity settings, these tailor-made integrators can
outperform more classical schemes (such as splitting methods [10] or classical
exponential integrators [5, 6]) thanks to an improved local error structure
which requires less regularity.

In the present paper we analyze two known schemes of this type, the
first-order integrator for (1.1) from [13] and the second-order scheme for
(1.2) from [9]. We show that they converge with their full order in particular
situations where previously only fractional convergence orders were known.
The general outline of proof is in both cases the same. We first derive a
suitable representation of the local error. This has the property that in a
second step, the sum of the local error terms can be optimally estimated
exploiting an equation-specific space-time inequality for the solution u. Here
we only use the estimates for continuous time, since discrete-time estimates
often involve a loss, see [11, 12, 16]. The proof of the error bound is then
completed in a classical way by a discrete Gronwall argument. Hence, our
proof strategy is very flexible and could possibly be adapted to show error
bounds also for other equations and integrators. In this work we only analyze
the temporal semi-discretization, but expect that an extension to a fully
discrete setting is possible.

1.1. The Schrödinger case. In the seminal paper [13], a low-regularity
integrator was proposed for the time integration of the nonlinear Schrödinger
equation (1.1) (and also its higher-dimensional versions). The scheme com-
putes approximation un ≈ u(nτ) via

un+1 = Φτ (un) := eiτ∂2
x

(
un − iτµ(un)2φ1(−2iτ∂2

x)ūn
)
. (1.3)

The operator φ1(−2iτ∂2
x) can be defined in Fourier space or using the func-

tional calculus for φ1(z) = (ez − 1)/z. For our purposes, the definition via
the integral representation

φ1(−2iτ∂2
x)f := 1

τ

∫ τ

0
e−2is∂2

xf ds (1.4)

for f ∈ L2(T) is convenient. The authors in [13] proved a general convergence
result which in the one-dimensional case reads as follows.

Theorem 1.1 ([13]). Let r > 1/2 and γ ∈ (0, 1]. Assume that the solution u
to (1.1) satisfies u(t) ∈ Hr+γ(T) for all t ∈ [0, T ]. Then there are a constant
C > 0 and a maximum step size τ0 > 0 such that the approximations un
obtained by (1.3) satisfy the error bound

∥u(nτ) − un∥Hr(T) ≤ Cτγ

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . The numbers C and τ0 only
depend on T and ∥u∥L∞([0,T ],Hr+γ(T)).

We will later make use of Theorem 1.1 since it provides an a-priori bound
in L∞ for the numerical solution un if τ is small enough. The condition
r > 1/2 in Theorem 1.1 arises from the use of the algebra property of the
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Sobolev space Hr(T). The space L2(T) does not have this property, so it is
a natural question if Theorem 1.1 still holds if r = 0 and γ = 1. This was
addressed in the follow-up work [11], where the problem (1.1) was considered
with spatial domain Rd, d ∈ {1, 2, 3}. The difficulty is that the local error of
the scheme (1.3) is roughly of the form

τ2|∂xu|2u,
cf. p.731 of [11]. Estimating this is L2 for fixed times would require that
u ∈ W 1,4, which is not covered by the assumption u ∈ H1. It is however
known that solutions to dispersive equations such as (1.1) enjoy better
integrability properties in space if we also involve integration in the time
variable. This is formalized using Strichartz estimates, which control mixed
space-time LpLq norms of solutions to linear dispersive equations in terms
of the data, cf. Chapter 2.3 of [17]. In [11], the authors proved discrete-
time Strichartz estimates and used them to show fractional convergence
rates (strictly between 1/2 and 1 depending on the dimension) in L2 for a
frequency-filtered variant of (1.3). In the case d = 1, the convergence rate
was 5/6. In the subsequent paper [12], the authors analyzed the problem
(1.1) on the torus T. They introduced discrete Bourgain spaces and used
them to prove a convergence rate of almost 7/8 for a significantly refined
frequency-filtered variant of (1.3).

The reason why in [11, 12] the optimal first-order convergence could not be
reached is that the discrete-time Strichartz and Bourgain space estimates only
hold for frequency localized functions. Moreover, they contain a multiplicative
loss depending on Kτ1/2, where K is the largest frequency and τ denotes
the time step-size. The continuous-time Strichartz estimates however do not
suffer from those disadvantages. In this work we extend Theorem 1.1 to the
case r = 0 and γ = 1 with optimal first-order convergence. In contrast to
[11, 12], we do not use frequency filtering and discrete-time Strichartz or
Bourgain space estimates. Instead, we derive an error representation which
allows us to apply the continuous-time periodic Strichartz estimate

∥eit∂2
xf∥L4([0,T ]×T) ≲T ∥f∥L2(T). (1.5)

A proof of (1.5) can be found in Theorem 1 and the subsequent remark of
[18] or Proposition 2.1 of [1]. The idea to use continuous-time Strichartz
estimates to control the local error goes back to [7].

Our convergence result in L2 reads as follows. Its proof is carried out in
Section 2.

Theorem 1.2. Assume that the solution u to (1.1) satisfies u(t) ∈ H1(T)
for all t ∈ [0, T ]. Then there are a constant C > 0 and a maximum step size
τ0 > 0 such that the approximations un obtained by (1.3) satisfy the error
bound

∥u(nτ) − un∥L2(T) ≤ Cτ

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . The numbers C and τ0 only
depend on T and ∥u∥L∞([0,T ],H1(T)).

We comment on possible extensions of Theorem 1.2 to higher dimensions.
The embedding H1 ↪→ L∞ as well as the estimate (1.5), which are both
crucially exploited in the proof of Theorem 1.2, are then wrong, in general.
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In two dimensions, they however both only require an arbitrary small amount
of extra regularity (see Proposition 3.6 of [1] for the 2D version of (1.5)).
Therefore, it is possible to extend Theorem 1.2 to the 2D case under the
slightly stronger regularity assumption u ∈ H1+ε for some ε > 0. One could
also stick to the H1 assumption if one considers a suitably filtered variant of
(1.3) and lowers the convergence rate by ε. The three-dimensional case seems
to be more difficult and we do not know how the optimal result then looks
like. The situation becomes easier if the torus Td is replaced by the full space
Rd, since then a wider range of Strichartz estimates becomes applicable, cf.
Chapter 2.3 of [17]. It seems also possible to extend our analysis to the
symmetric two-step variant of (1.3) that was recently proposed in [4].

1.2. The wave case. For the nonlinear wave equation (1.2), the authors in
[9] proposed a low-regularity integrator which was called the corrected Lie
splitting. It computes approximations (un, vn) ≈ (u(nτ), ∂tu(nτ)) via(

un+1
vn+1

)
= eτA

[ (
un
vn

)
+ τ

(
0

g(un)

)
+ τ2φ2(−2τA)

(
−g(un)
g′(un)vn

) ]
, (1.6)

with wave operator A(u, v) = (v, ∂2
xu). The operator φ2(−2τA) is defined

by the integral representation

φ2(−2τA)w := 1
τ2

∫ τ

0
(τ − s)e−2sAw ds (1.7)

for w ∈ H1 × L2. Similar as in the Schrödinger case, one could equivalently
use the functional calculus for φ2(z) = (ez − z − 1)/z2. In [9], under a
Lipschitz condition on the nonlinearity g, it was shown that the scheme
(1.6) converges with order 2 in H1 × L2 under the regularity assumption
(u, ∂tu) ∈ H1+d/4 ×Hd/4 for spatial dimensions d ∈ {1, 2, 3}. The reason for
this additional regularity requirement is that the main part of the local error
is roughly of the form

∥(∂tu)2 − ∇u · ∇u∥L2(Td), (1.8)

cf. equation (2.26) of [9]. This term was then estimated (for fixed times)
using the triangle inequality and the Sobolev embedding Hd/4(Td) ↪→ L4(Td).
For the one-dimensional case d = 1, the authors in [9] also gave a convergence
result under the weaker regularity assumption (u, ∂tu) ∈ H1 × L2. Using
an interpolation argument, it was shown that the scheme (1.6) converges
almost with order 4/3 in H1 × L2. However, the numerical experiments in
[9] suggested that the convergence is of order 2 also in this case.

Here, we give a rigorous proof of this second-order convergence. In contrast
to the Schrödinger case, the 1D wave equation does not exhibit dispersive
behavior. Instead, the idea is to exploit that the expression (1.8) contains a
so-called null form which allows for improved space-time bounds compared
to the above fixed-time approach. Such null form estimates are widely used
in the analysis of nonlinear wave equations, cf. [8] or pp.292 of [17]. They rely
on cancellation of parallel interactions (where waves move together) in the
bilinear expression in (1.8). In the one-dimensional case one has the following
estimate. If ϕ solves the linear inhomogeneous wave equation ∂2

t ϕ− ∂2
xϕ = F
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on [0, T ] × T, then one has the inequality

∥(∂tϕ)2 − (∂xϕ)2∥L2([0,T ]×T)

≲T ∥∂xϕ(0)∥2
L2(T) + ∥∂tϕ(0)∥2

L2(T) + ∥F∥2
L1([0,T ],L2(T)). (1.9)

Note that the right-hand side of (1.9) only contains the L2 norm of ∂t,xϕ(0)
instead of the L4 norm that would result from the triangle inequality approach.
If we replace T with R, estimate (1.9) can be found in (1.8) of [8] (in a
simplified form) or in (6.29) of [17]. For convenience, we give a direct proof
of (1.9) on T based on d’Alembert’s formula at the beginning of Section 3.

With the help of estimate (1.9), we are able to show the following improved
error bound for the corrected Lie splitting (1.6). The proof is given in Section
3. To our knowledge, this is the first time that a null form estimate like (1.9)
is used in numerical analysis.

Theorem 1.3. Assume that the solution u to (1.2) satisfies (u(t), ∂tu(t)) ∈
H1(T) × L2(T) for all t ∈ [0, T ]. Then there are a constant C > 0 and a
maximum step size τ0 > 0 such that the approximations (un, vn) obtained by
(1.6) satisfy the error bound

∥u(nτ) − un∥H1(T) + ∥∂tu(nτ) − vn∥L2(T) ≤ Cτ2

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . The numbers C and τ0 only
depend on g, T , ∥u∥L∞([0,T ],H1(T)), and ∥∂tu∥L∞([0,T ],L2(T)).

The higher-dimensional versions of the null form estimate (1.9) require
more regularity, cf. [8] or inequality (6.29) of [17]. In two dimensions, they
could possibly still be used to show an analogue of Theorem 1.3 with a
convergence rate greater than one under a suitable growth condition on g.
Very recently, convergence rates for a Strang splitting scheme for the 3D
semilinear wave equation with power nonlinearity under the assumption
(u, ∂tu) ∈ H1 × L2 were obtained in [15]. We do not know whether in
this situation it is possible to show higher rates by using a low-regularity
integrator instead.

Notation. We use the notation A ≲γ B if there is a constant c > 0
(depending on quantities γ) such that A ≤ cB. If it is clear from the context,
we often abbreviate H1 = H1(T) as well as Lp = Lp(T). For a step size
τ > 0 and a number n ∈ N0, the discrete times are denoted by tn := nτ .

2. Proof of the result for the nonlinear Schrödinger equation

In this section we prove Theorem 1.2. We start by converting the linear
estimate (1.5) into a bound for the solution u to the nonlinear problem (1.1).

Assumption 2.1. There exists a time T > 0 and a solution u ∈ C([0, T ], H1)∩
C1([0, T ], H−1) to the nonlinear Schrödinger equation (1.1) with bound

M := ∥u∥L∞([0,T ],H1).

Corollary 2.2. Let u, T , and M be given by Assumption 2.1. Then we have
the estimate

∥∂xu∥L4([0,T ]×T) ≲M,T 1.
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Proof. We apply estimate (1.5) to Duhamel’s formula

u(t) = eit∂2
xu0 − iµ

∫ t

0
ei(t−s)∂2

x(|u|2u)(s) ds.

Using also Minkowski’s inequality and Sobolev’s embedding H1 ↪→ L∞, we
get

∥∂xu∥L4([0,T ]×T) ≲T ∥∂xu0∥L2 +
∫ T

0
∥∂x(|u|2u)(s)∥L2 ds

≲M 1 + ∥u∥2
L2([0,T ],L∞)∥∂xu∥L∞([0,T ],L2) ≲M,T 1. □

We now give a representation of the local error of the low-regularity
integrator (1.3). The calculations are inspired by the ones in Section 3 of [14].
But compared to there and also [13], we do not insert the approximation
u(s) ≈ eis∂2

xu0 at first. This makes it easier for us to apply Corollary 2.2 in
the subsequent Lemma 2.4.

Lemma 2.3. Let u and T be given by Assumption 2.1. Then for τ ∈ (0, T ],
the local error of (1.3) is given by

u(τ) − u1 = µ

∫ τ

0

∫ s

0
ei(τ−σ)∂2

xD(σ, s) dσ ds.

Here we define
D(σ, s) = D1(σ, s) +D2(σ, s) +D3(σ, s)

with
D1(σ, s) := µu(σ)2

(
e2i(σ−s)∂2

x(|u|2ū)(σ) − 2|u(σ)|2e2i(σ−s)∂2
x ū(σ)

)
,

D2(σ, s) := −2(∂xu(σ))2e2i(σ−s)∂2
x ū(σ),

D3(σ, s) := −4u(σ)∂xu(σ)e2i(σ−s)∂2
x∂xū(σ).

Proof. By (1.4), we have

τφ1(−2iτ∂2
x)ū0 =

∫ τ

0
e−2is∂2

x ū0 ds.

Hence, we get by Duhamel’s formula and the fundamental theorem of calculus

u(τ) − u1 = −iµeiτ∂2
x

∫ τ

0

(
e−is∂2

x(u2ū)(s) − u2
0e

−2is∂2
x ū0

)
ds

= µeiτ∂2
x

∫ τ

0
(N(s, s) −N(0, s)) ds = µeiτ∂2

x

∫ τ

0

∫ s

0
∂1N(σ, s) dσ ds.

Here, the function N(·, s) ∈ C1([0, τ ], H−1(T)) is defined as

N(σ, s) := −ie−iσ∂2
x

(
u(σ)2e2i(σ−s)∂2

x ū(σ)
)
.

Using the product rule and the differential equation (1.1), we compute the
derivative as
∂1N(σ, s) = e−iσ∂2

x

[
− ∂2

x

(
u(σ)2e2i(σ−s)∂2

x ū(σ)
)

− 2iu(σ)∂tu(σ)e2i(σ−s)∂2
x ū(σ)

+ 2u(σ)2e2i(σ−s)∂2
x∂2
xū(σ) − iu(σ)2e2i(σ−s)∂2

x∂tū(σ)
]

= e−iσ∂2
x

[
− 2∂2

xu(σ)u(σ)e2i(σ−s)∂2
x ū(σ) − 2(∂xu(σ))2e2i(σ−s)∂2

x ū(σ)
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− 4u(σ)∂xu(σ)e2i(σ−s)∂2
x∂xū(σ) − u(σ)2e2i(σ−s)∂2

x∂2
xū(σ)

+ 2u(σ)∂2
xu(σ)e2i(σ−s)∂2

x ū(σ) − 2µu(σ)(|u|2u)(σ)e2i(σ−s)∂2
x ū(σ)

+ 2u(σ)2e2i(σ−s)∂2
x∂2
xū(σ) − u(σ)2e2i(σ−s)∂2

x∂2
xū(σ)

+ µu(σ)2e2i(σ−s)∂2
x(|u|2ū)(σ)

]
= e−iσ∂2

x

[
− 2(∂xu(σ))2e2i(σ−s)∂2

x ū(σ)

− 4u(σ)∂xu(σ)e2i(σ−s)∂2
x∂xū(σ)

+ µu(σ)2
(

− 2|u(σ)|2e2i(σ−s)∂2
x ū(σ) + e2i(σ−s)∂2

x(|u|2ū)(σ)
)]

= e−iσ∂2
x

[
D1(σ, s) +D2(σ, s) +D3(σ, s)

]
,

where we exploit the cancellation of all second-order partial derivatives. The
derivative is well-defined in H−1(T) since in 1D we can use the embedding
L1 ↪→ H−1 and that the multiplication by an H1 function is a continuous
operator on H−1. □

In the next step we bound the sum of the local errors terms, where we
will crucially exploit Corollary 2.2 as well as the dual of estimate (1.5).

Lemma 2.4. Let u, T , and M be given by Assumption 2.1. Then we can
bound the sum of local errors of (1.3) by∥∥∥ n−1∑

k=0
ei(n−k−1)τ∂2

x

(
u(tk+1) − Φτ (u(tk))

)∥∥∥
L2

≲M,T τ,

for all τ ∈ (0, T ] and n ∈ N0 with nτ ≤ T .

Proof. By Lemma 2.3 with u(tk + ·) instead of u,
n−1∑
k=0

ei(n−k−1)τ∂2
x

(
u(tk+1) − Φτ (u(tk))

)

= µ
n−1∑
k=0

ei(n−k)τ∂2
x

∫ τ

0

∫ s

0
e−iσ∂2

xD(tk + σ, tk + s) dσ ds.

We now use the decomposition D = D1 +D2 +D3 from Lemma 2.3. For the
first term we even get∥∥∥ n−1∑

k=0
ei(n−k)τ∂2

x

∫ τ

0

∫ s

0
e−iσ∂2

xD1(tk + σ, tk + s) dσ ds
∥∥∥
H1

≲M,T nτ
2 ≲T τ,

using the algebra property of H1 in 1D. The second term is controlled by∥∥∥ n−1∑
k=0

ei(n−k)τ∂2
x

∫ τ

0

∫ s

0
e−iσ∂2

xD2(tk + σ, tk + s) dσ ds
∥∥∥
L2

≤
n−1∑
k=0

∫ τ

0

∫ s

0
∥D2(tk + σ, tk + s)∥L2 dσ ds

≲
n−1∑
k=0

∫ τ

0

∫ τ

0
∥(∂xu(tk + σ))2∥L2∥e2i(σ−s)∂2

x ū(tk + σ)∥L∞ dσ ds
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≲ τ
n−1∑
k=0

∫ τ

0
∥∂xu(tk + σ)∥2

L4∥u(tk + σ)∥H1 dσ ≲M τ∥∂xu∥2
L2([0,T ],L4)

≲T τ∥∂xu∥2
L4([0,T ]×T) ≲M,T τ.

Here we used Hölder’s inequality, the Sobolev embedding H1 ↪→ L∞, and
Corollary 2.2. The term involving D3 is first rewritten as

n−1∑
k=0

ei(n−k)τ∂2
x

∫ τ

0

∫ s

0
e−iσ∂2

xD3(tk + σ, tk + s) dσ ds

=
n−1∑
k=0

∫ tk+1

tk

∫ s

tk

ei(nτ−σ)∂2
xD3(σ, s) dσ ds

=
∫ nτ

0
ei(nτ−σ)∂2

x

∫ ⌈ σ
τ

⌉τ

σ
D3(σ, s) ds dσ,

where the application of Fubini’s theorem is justified since the double inte-
gral converges absolutely in H−1. We next apply the dual of the periodic
Strichartz estimate (1.5), which reads∥∥∥ ∫ T

0
e−it∂2

xF (t) dt
∥∥∥
L2

≲T ∥F∥
L

4
3 ([0,T ]×T)

.

We infer that∥∥∥ ∫ nτ

0
ei(nτ−σ)∂2

x

∫ ⌈ σ
τ

⌉τ

σ
D3(σ, s) ds dσ

∥∥∥
L2

≲T

∥∥∥σ 7→
∫ ⌈ σ

τ
⌉τ

σ
D3(σ, s) ds

∥∥∥
L

4
3 ([0,T ]×T)

≲
∥∥∥σ 7→ ∥u(σ)∥L∞∥∂xu(σ)∥L4

∫ ⌈ σ
τ

⌉τ

σ
∥e2i(σ−s)∂2

x∂xū(σ)∥L2 ds
∥∥∥
L

4
3 ([0,T ])

≲M τ∥∂xu∥
L

4
3 ([0,T ],L4)

≲T τ∥∂xu∥L4([0,T ]×T) ≲M,T τ,

using again Hölder’s inequality, the Sobolev embedding H1 ↪→ L∞, and
Corollary 2.2. □

We can now finish the proof of the global error bound in a classical way
with the help of the discrete Gronwall lemma.

Proof of Theorem 1.2. We define the error
en := u(tn) − un.

We get the recursion formula
en+1 = u(tn+1) − Φτ (u(tn)) + Φτ (u(tn)) − Φτ (un)

= u(tn+1) − Φτ (u(tn)) + eiτ∂2
xen

− iτµeiτ∂2
x

(
(u(tn))2φ1(−2iτ∂2

x)ū(tn) − (un)2φ1(−2iτ∂2
x)ūn

)
.

This formula implies that

en =
n−1∑
k=0

ei(n−k−1)τ∂2
x

(
u(tk+1) − Φτ (u(tk))

)
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− iτµ
n−1∑
k=0

ei(n−k)τ∂2
x

(
(u(tk))2φ1(−2iτ∂2

x)ū(tk) − (uk)2φ1(−2iτ∂2
x)ūk

)
,

exploiting that e0 = 0. From Lemma 2.4 and standard estimates we infer
that

∥en∥L2 ≲M,T τ + τ
n−1∑
k=0

(1 + ∥ek∥2
H

3
4
)∥ek∥L2

using the Sobolev embedding H3/4 ↪→ L∞ and the representation uk =
u(tk) − ek. By Theorem 1.1 with r = 3/4 and γ = 1/4, we find τ0 > 0
depending only on M and T , such that

∥en∥
H

3
4

≤ 1

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . For such τ and n we thus derive
that

∥en∥L2 ≲M,T τ + τ
n−1∑
k=0

∥ek∥L2 .

By the discrete Gronwall inequality, we can conclude that
∥en∥L2 ≲M,T τ. □

3. Proof of the result for the nonlinear wave equation

In this section we carry out the proof of Theorem 1.3. Our first goal is to
show estimate (1.9). Therefore we define the bilinear form

Q(ϕ, ψ) := ∂tϕ∂tψ − ∂xϕ∂xψ.

As a preparatory step, we treat the homogeneous problem.

Lemma 3.1. Let ϕ and ψ solve the homogeneous wave equations
∂2
t ϕ− ∂2

xϕ = 0, ϕ(0) = ϕ0, ∂tϕ(0) = ϕ1

∂2
t ψ − ∂2

xψ = 0, ψ(0) = ψ0, ∂tψ(0) = ψ1

with Cauchy data ϕ0, ψ0 ∈ H1(T) and ϕ1, ψ1 ∈ L2(T). We then have the
estimate

∥Q(ϕ, ψ)∥L2(T×T) ≲ (∥∂xϕ0∥L2 + ∥ϕ1∥L2)(∥∂xψ0∥L2 + ∥ψ1∥L2).

Proof. We define

vϕ = 1
2(∂xϕ0 + ϕ1), wϕ = 1

2(∂xϕ0 − ϕ1),

and similarly for ψ. By d’Alembert’s formula, we can then write
∂tϕ(t, x) = vϕ(x+ t) − wϕ(x− t), ∂xϕ(t, x) = vϕ(x+ t) + wϕ(x− t).

We compute
Q(ϕ, ψ)(t, x) = (vϕ(x+ t) − wϕ(x− t))(vψ(x+ t) − wψ(x− t))

− (vϕ(x+ t) + wϕ(x− t))(vψ(x+ t) + wψ(x− t))
= −2vϕ(x+ t)wψ(x− t) − 2wϕ(x− t)vψ(x+ t).

Note that the “parallel interactions” (where one has twice “x+ t” or twice
“x − t”) are canceled and only the “transverse interactions” (where one
has once “x + t” and once “x − t”) remain. See p.293 of [17] for further
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explanations of this phenomenon that also apply to the higher dimensional
cases. We can now obtain the desired estimate in the following way. By
integral substitutions x− t = y and y + 2t = s, it follows that∫

T

∫
T

|v(x+ t)w(x− t)|2 dx dt = ∥v∥2
L2(T)∥w∥2

L2(T)

for general functions v, w. Hence,

∥Q(ϕ, ψ)∥L2(T×T) ≲ ∥vϕ∥L2∥wψ∥L2 + ∥wϕ∥L2∥vψ∥L2

≲ (∥∂xϕ0∥L2 + ∥ϕ1∥L2)(∥∂xψ0∥L2 + ∥ψ1∥L2). □

Now we give the proof of (1.9).

Proposition 3.2. Let T > 0 and ϕ solve the inhomogeneous wave equation

∂2
t ϕ− ∂2

xϕ = F, ϕ(0) = ϕ0, ∂tϕ(0) = ϕ1 (3.1)

on [0, T ] × T with data ϕ0 ∈ H1(T), ϕ1 ∈ L2(T), and F ∈ L1([0, T ], L2(T)).
Then we have the inequality

∥Q(ϕ, ϕ)∥L2([0,T ]×T) ≲T ∥∂xϕ0∥2
L2 + ∥ϕ1∥2

L2 + ∥F∥2
L1([0,T ],L2).

Proof. We decompose ϕ = ϕhom + ϕinh, where ϕhom solves (3.1) with F = 0
and ϕinh solves (3.1) with ϕ0 = ϕ1 = 0. The estimate for Q(ϕhom, ϕhom)
follows directly from Lemma 3.1 and the periodicity of ϕhom in time. To
treat the inhomogeneous part, for almost all s ∈ [0, T ], we define ϕs to be
the solution to the homogeneous equation

∂2
t ϕ

s − ∂2
xϕ

s = 0, ϕs(s) = 0, ∂tϕ
s(s) = F (s).

By Duhamel’s formula, ϕinh is then given by

ϕinh(t) =
∫ t

0
ϕs(t) ds.

It follows that we can express the bilinear term as

Q(ϕinh, ϕinh)(t) =
∫ t

0

∫ t

0
Q(ϕs, ϕr)(t) ds dr.

From Minkowski’s inequality, Lemma 3.1, and the energy equality we thus
get

∥Q(ϕinh, ϕinh)∥L2([0,T ]×T) ≤
∫ T

0

∫ T

0
∥Q(ϕs, ϕr)∥L2([0,T ]×T) dsdr

≲
∫ T

0

∫ T

0
(∥∂xϕs(0)∥L2 + ∥∂tϕs(0)∥L2)

· (∥∂xϕr(0)∥L2 + ∥∂tϕr(0)∥L2) ds dr
≲ ∥F∥2

L1([0,T ],L2).

The mixed term Q(ϕhom, ϕinh) is treated similarly. □

We now turn to the nonlinear wave equation (1.2). Here it is convenient
to work with the first-order reformulation. With the definitions

U :=
(
u
v

)
=̂

(
u
∂tu

)
, A :=

(
0 I
∂2
x 0

)
, G(U) :=

(
0

g(u)

)
, U0 :=

(
u0
v0

)
,
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we obtain the equivalent differential equation
∂tU(t) = AU(t) +G(U(t)), t ∈ [0, T ],
U(0) = U0.

(3.2)

Assumption 3.3. There exists a time T > 0 and a solution U = (u, ∂tu) ∈
C([0, T ], H1 ×L2)∩C1([0, T ], L2 ×H−1) to the nonlinear wave equation (3.2)
with bound

M := ∥U∥L∞([0,T ],H1×L2).

Since the nonlinearity g belongs to C2(R,R), we can find an increasing
function L such that the bound

|g(z)| + |g′(z)| + |g′′(z)| ≤ L(|z|) (3.3)
holds for all z ∈ R. In the following, we suppress the dependency on the
function L from (3.3) in the ≲ notation. We now apply Proposition 3.2 to
the solution u to the nonlinear problem (1.2).

Corollary 3.4. Let u, T , and M be given by Assumption 3.3. Then we have
the estimate

∥(∂tu)2 − (∂xu)2∥L2([0,T ]×T) ≲M,T 1.

Proof. By Proposition 3.2, we only need that
∥g(u)∥L1([0,T ],L2) ≲M,T 1,

and this follows from (3.3), Hölder’s inequality, and the Sobolev embedding
H1 ↪→ L∞. □

We now give a brief derivation of the corrected Lie splitting (1.6) proposed
in [9]. It is based of the Lie splitting approximation for (3.2), which is a
formally first-order scheme given by

ULie
n+1 = eτA[ULie

n + τG(ULie
n )]. (3.4)

By the Duhamel formulation of (3.2), the fundamental theorem of calculus,
and Fubini’s theorem, the local error of (3.4) can be represented as

U(τ) − ULie
1 = eτA

∫ τ

0
(τ − s)e−sAH(U(s)) ds. (3.5)

Here we use the definition

H(U(s)) := esA
d
ds

[
e−sAG(U(s))

]
=

(
−g(u(s))

g′(u(s))∂tu(s)

)
.

Similar as in the Schrödinger case, we do not insert the approximation
U(s) ≈ esAU0 (which was used in [9]) in order to create better conditions for
applying Corollary 3.4 later.

The crucial observation which allows the construction of the low-regularity
integrator is that H(U) satisfies the differential equation

d
dsH(U(s)) = −AH(U(s)) +B(U(s)) (3.6)

in L2(T) ×H−1(T), where the remainder

B(U) :=
(

0
g′′(u)[(∂tu)2 − (∂xu)2] + g′(u)g(u)

)
(3.7)
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only contains first-order derivatives of u. We plug the Duhamel approximation
H(U(s)) ≈ e−sAH(U0) for (3.6) into (3.5) and exploit (1.7) to get

U(τ) − ULie
1 ≈ eτA

∫ τ

0
(τ − s)e−2sAH(U0) ds = τ2eτAφ2(−2τA)H(U0).

Adding this term on the Lie splitting (3.4) gives the formally second-order
corrected Lie splitting

Un+1 = Ψτ (Un) := eτA[Un + τG(Un) + τ2φ2(−2τA)H(Un)], (3.8)

which corresponds to (1.6). From this derivation we immediately get the
following representation of the local error. A related formula was derived in
Lemma 6.2 of [16] in the 3D case.

Lemma 3.5. Let U and T be given by Assumption (3.3). Then the local
error of the corrected Lie splitting (3.8) is given by

U(τ) − U1 = eτA
∫ τ

0
(τ − s)e−2sA

∫ s

0
eσAB(U(σ)) dσ ds

for all τ ∈ (0, T ].

Proof. Follows directly from (3.5) and the Duhamel formulation of (3.6). □

We can now bound the sum of local errors with the help of Corollary 3.4.

Lemma 3.6. Let U = (u, ∂tu), T , and M be given by Assumption 3.3. Then
we can bound the sum of local errors of (3.8) by∥∥∥ n−1∑

k=0
e(n−k−1)τA

(
U(tk+1) − Ψτ (U(tk))

)∥∥∥
H1×L2

≲M,T τ
2,

for all τ ∈ (0, T ] and n ∈ N0 with nτ ≤ T .

Proof. By the triangle inequality and Lemma 3.5 with U(tk + ·) instead of
U , ∥∥∥ n−1∑

k=0
e(n−k−1)τA

(
U(tk+1) − Ψτ (U(tk))

)∥∥∥
H1×L2

≲T τ
2
n−1∑
k=0

∫ τ

0
∥B(U(tk + σ))∥H1×L2 dσ ≤ τ2∥B(U)∥L1([0,T ],H1×L2).

We next insert the definition (3.7) of B and apply (3.3) and finally Corollary
3.4 to obtain

∥B(U)∥L1([0,T ],H1×L2) = ∥g′′(u)[(∂tu)2 − (∂xu)2] + g′(u)g(u)∥L1([0,T ],L2)

≲M,T ∥(∂tu)2 − (∂xu)2∥L2([0,T ]×T) + 1 ≲M,T 1. □

Similar as in the Schrödinger case, we conclude the proof of the global
error bound using the discrete Gronwall lemma.

Proof of Theorem 1.3. We proceed similar as in the proof of Theorem 1.2.
For the error

En := U(tn) − Un
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we get the formula

En =
n−1∑
k=0

e(n−k−1)τA
(
U(tk+1) − Ψτ (U(tk))

)

+ τ
n−1∑
k=0

e(n−k)τA
(
G(U(tk)) −G(Uk)

)

+ τ2φ2(−2τA)
n−1∑
k=0

e(n−k)τA
(
H(U(tk)) −H(Uk)

)
.

From Lemma 3.6, (3.3), and standard estimates, we infer that

∥En∥H1×L2 ≤ cτ2 + τ
n−1∑
k=0

K(∥Ek∥H1×L2)∥Ek∥H1×L2

with a constant c > 0 and an increasing function K, both depending on M ,
T , and L. We define the maximum step size

τ0 := (ceK(1)T )− 1
2 .

Using the discrete Gronwall lemma, we obtain via induction on n that
∥En∥H1×L2 ≤ cτ2eK(1)T ≤ 1

for all τ ∈ (0, τ0] and n ∈ N0 with nτ ≤ T . □
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