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MAXWELL EQUATIONS WITH LOCALIZED INTERNAL

DAMPING: STRONG AND POLYNOMIAL STABILITY

SERGE NICAISE AND ROLAND SCHNAUBELT

Abstract. We study the Maxwell system with localized conductivity σ and
the boundary conditions of a perfect conductor on a simply connected do-

main Ω, assuming that there are no electric charges off the support of σ. For

matrix-valued permittivity ε and permeability µ we show strong stability of the
underlying semigroup by checking the spectral criteria of the Arendt–Batty–

Lyubich–Vũ Theorem. If ε = µ = 1, Ω is the cube (0, π)3 and suppσ contains

a strip, the semigroup is polynomially stable of rate 1
2
. To derive this result,

we establish the resolvent estimate of the Borichev–Tomilov Theorem using an

orthonormal basis of eigenfunctions of the Maxwell operator for σ = 0.

1. Introduction and main results

The Maxwell system expresses the fundamental laws of electromagnetism. Here
the conductivity σ plays an important role in many materials such as metals since
it induces the current −σE in the system that acts as a damping. Like for the wave
equation it is an intriguing question how the strength of the damping is related
to the support of σ. However, this problem is far less studied for the Maxwell
equations. If the conductive is strictly positive on ‘large parts’ of the domain one
typically obtains exponential decay and related observability estimates. See e.g.
[13], [23], [24], or [26] in the linear case and [19] for nonlinear material laws. Among
the results on boundary conductivity, we also mention [12], [14], [16], [17], [18], [25].
So far, only for constant coefficients ε = µ = 1 exponential decay was established
under the ‘geometric control condition’ using techniques from microlocal analysis,
see [26]. There are almost no results on strong or polynomial stability in cases
where the geometric control condition fails. In this work we show strong stability
for a fairly general class of linear autonomous systems, and polynomial stability
with rate 1

2 if suppσ contains a strip of the cube (0, π)3 and ε = µ = 1. Our
approach is based on spectral and resolvent criteria.

Let Ω be a bounded and open subset of R3 with a Lipschitz boundary Γ and
outer unit normal ν. On Ω, we consider the Maxwell system

ε∂tE(t) = curlH(t)− σE(t), µ∂tH(t) = − curlE(t), in (0,∞)× Ω. (1.1)

Here the permittivity ε, the permeability µ and the conductivity σ belong to
L∞(Ω,R3×3

sym) and satisfy

ε, µ ≥ ηI, σ ≥ 0 (1.2)

for some η > 0. We complement (1.1) with the electric boundary condition

E(t)× ν = 0 in (0,∞)× Γ (1.3)
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and with the initial conditions E(0) = E0 and H(0) = H0.
Further, Ω0 denotes the open subset of Ω consisting of points x ∈ Ω such that

σ = 0 a.e. in a neighbourhood of x, and we set

Ω+ = Ω \ Ω0.

Recall that the essential support of σ is defined by suppess(σ) = Ω \Ω0 = Ω+, with
relative closure in Ω.
The kernel of curl contains the gradient fields, which are a severe obstacle for

regularity and compactness properties, and they lead to fixed vectors preventing
decay of solutions to (1.1). To get rid of them, one needs divergence conditions
for the data and restrictions on the topology of Ω, cf. Theorem 2.10’ in [7]. These
difficulties constitute a major difference between the scalar wave equation and the
Maxwell system, besides the complexity of system and its boundary conditions.
Throughout we require that the electric charge density div(εE0) vanish on Ω0, there
is no ‘magnetic charge density’ div(µH0) on Ω, and the normal trace ν ·µH0 is zero
on Γ. As noted in the next section, these conditions are preserved by the solutions
of (1.1). However, the internal conductivity will produce a non-zero charge density
div(εE0) on Ω+, which is a serious difficulty in our analysis. (This does not happen
in the case of boundary damping, which is easier in this respect.)

In this setting the Maxwell system is solved by a contraction semigroup etA

with generator A, see Lemma 2.1. After Section 2, when dealing with the long-
term behavior, we have to impose stronger assumptions on the domain and the
coefficients. We need that Ω simply connected, that Ω+ and Ω0 are non-empty
and have a Lipschitz boundary, and that ∂Ω0 ∩ Γ is a Lipschitz submanifold of Γ.
Moreover, ε and µ have to be Lipschitz and σ is scalar. Under these conditions, in
Section 3 we show that iR \ {0} belongs to the resolvent set of A. Here injectivity
follows from a backward uniqueness result for the time-harmonic Maxwell system.
Surjectivity is proven by means of Lax–Milgram and a Fredholm argument which
exploits a compact embedding for the H-fields in our state space. We stress that we
cannot expect a compact resolvent of A since there could be electric charges on Ω+.
We further describe the kernel of A and show that it is the orthogonal complement
of its range. Because of the Arendt–Batty–Lyubich–Vũ theorem, in Theorem 3.6
we then obtain the strong stability of the restriction of etA to (kerA)⊥. A variant
of this fact under partly different hypotheses was shown by Eller in [13] without
invoking spectral theory, see also [28] for the case of boundary damping.
With some effort we can then show the closedness of the range of A in Proposi-

tion 4.4 assuming also that Γ is connected, σ is strictly positive on G+, and certain
geometric constraints on G0, see (A0)–(A3). This fact is based on a Poincaré-type
inequality for the curl in Lemma 4.2 which exploits the charge-freeness on Ω0 to
counteract the electric charges on Ω+. In our main result Theorem 5.2 we fur-
ther specialize to the cube Ω = (0, π)3 (see Remark 5.6 for a variant), coefficients
ε = µ = 1, and damping regions Ω+ that contain a strip (0, π)2 × (a, b). We can
then show that the kernel of A is polynomially stable with rate 1

2 ; i.e.,

∥etAU0 − PU0∥H ≤ C t−
1
2 ∥U0∥D(A), ∀U0 ∈ D(A), t ≥ 1. (1.4)

for the orthogonal projection P onto ker(A) = R(A)⊥. We are aware of only one
related result. In [27] Phung treated general cylinders D× (−ρ, ρ) with a damping
region around the lateral boundary ∂D×(−ρ, ρ). However, in this result there is no
information about the rate; whereas the proofs seem to give much smaller values
than our 1

2 . The method in [27] is completely different than ours using Fourier
integral operators and observation-type estimates.
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To show (1.4), we check the resolvent condition of the Borichev–Tomilov the-
orem via a contradiction argument. By this approach, for the 2D wave equation
an analogous result was already shown in [20]. There one could use trigonometric
polynomials as an orthonormal base, which here have to be replaced by the TE-
and TM-modes for the Maxwell system with σ = 0, see [9]. Our argument in-
volves correction terms to make our solutions completely divergence-free and the
calculations take advantage of the (complicated) structure of the eigenfunctions.

We finish this introduction with some notation used in the remainder of the
paper. Let us first recall important Hilbert spaces based on the div and curl op-
erators, where θ ∈ L∞(Ω,R3×3

≥η ). The traces below are defined in H−1/2(Γ), see

Theorems 2.2.18 and 2.2.24 in [3].

H(curl,Ω) = {E ∈ L2(Ω)3 : curlE ∈ L2(Ω)3},
H0(curl,Ω) = {E ∈ H(curl,Ω) : E × ν = 0 on Γ},
H(divθ,Ω) = {F ∈ L2(Ω)3 : div(θF ) ∈ L2(Ω)},
H0(divθ,Ω) = {F ∈ H(divθ,Ω) : (θF ) · ν = 0 on Γ},

H(divθ = 0,Ω) = {F ∈ L2(Ω)3 : div(θF ) = 0},
H0(divθ = 0,Ω) = H0(divθ,Ω) ∩H(divθ = 0,Ω),

XN,θ(Ω) = H0(curl,Ω) ∩H(divθ,Ω),

XT,θ(Ω) = H(curl,Ω) ∩H0(divθ,Ω),

KN,θ(Ω) = {u ∈ XN,θ(Ω) : curlu = 0 and div(θu) = 0},
KT,θ(Ω) = {u ∈ XT,θ(Ω) : curlu = 0 and div(θu) = 0}.

All are endowed with the natural Hilbertian norm. We omit the subscript θ if θ = 1.
Let s ∈ R, D ⊂ Ω′ or D ⊂ ∂Ω′, where Ω′ ⊂ R3 has a Lipschitz boundary. The

usual norm and semi-norm of Hs(D) are denoted by ∥·∥s,D and | · |s,D, respectively.
For s = 0 we drop the index s. By A ≲ B, we mean that there exists a constant
C > 0 independent of A, B, and the time variable t such that A ≤ CB.

2. Well-posedness of the problem

We first discuss the Gauß’ laws for E and H. Let (E,H)⊤ in C
(
[0,∞), L2(Ω)

)
∩

C1
(
[0,∞), H−1(Ω)

)
solve (1.1). Applying the (distributional) divergence to the

first equation of (1.1) in Ω0, we obtain

∂t div(εE(t)) = 0 in Ω0, ∀ t > 0.

Consequently, if the initial electric field satisfies

div(εE0) = 0 in Ω0, (2.1)

then it follows
div(εE(t)) = 0 in Ω0, ∀ t > 0.

Similarly, the second equation yields

∂t div(µH(t)) = 0 in Ω, ∀ t > 0.

Hence, the assumption
div(µH0) = 0 in Ω, (2.2)

leads to
div(µH(t)) = 0 in Ω, ∀ t > 0.

Assume also E ∈ C([0,∞), H0(curl,Ω)). Then Corollary 3.1.6 of [3] yields ν ·
curlE = 0 on Γ. So we deduce as above that

ν ·H = 0 on Γ, ∀ t > 0, if ν ·H0 = 0 on Γ. (2.3)
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We often use these properties, e.g., in the context of Helmholtz decompositions.
These arguments justify to introduce the state space

H = Hσ(divε = 0,Ω)×H0(divµ = 0,Ω),

which is a Hilbert space with the inner product(
(E,H)⊤, (E′, H ′)⊤

)
H

=

∫
Ω

(
εE · Ē′ + µH · H̄ ′), ∀ (E,H)⊤, (E′, H ′)⊤ ∈ H,

of L2
ε(Ω)

3 × L2
µ(Ω)

3, where for shortness we have set

Hσ(divε = 0,Ω) = {E ∈ L2(Ω)3 : div(εE) = 0 in Ω0}, (2.4)

To treat (1.1) on the space H, we define the closed operator A by

D(A) = H ∩
(
H0(curl,Ω)×H(curl,Ω)

)
,

A(E,H)⊤ =
(
ε−1(curlH − σE),−µ−1 curlE

)⊤
.

This operator generates a C0-semigroup etA of contractions in H because it is
maximally dissipative, as shown in the next lemma.

Lemma 2.1. Let Ω ⊆ R3 be a bounded Lipschitz domain and ε, µ, σ ∈ L∞(Ω,R3×3
sym)

satisfy (1.2). Then A is maximally dissipative in H.

Proof. The proof is quite standard except for the maximality, where we have to
take into account the divergence constraint in Ω0. First, Green’s formula yields the
core dissipation identity(

A(E,H)⊤, (E,H)⊤
)
H

= −
∫
Ω

σ|E|2, ∀ (E,H)⊤ ∈ D(A), (2.5)

so that A is dissipative.
To show maximality of A, fix λ > 0 and (F,G)⊤ ∈ H. We are looking for

(E,H)⊤ ∈ D(A) satisfying

λ(E,H)⊤ −A(E,H)⊤ = (F,G)⊤. (2.6)

or equivalently

λεE − curlH + σE = εF, λµH + curlE = µG.

We derive a second-order version. The second equation leads to

H = λ−1G− λ−1µ−1 curlE. (2.7)

Inserting this expression into the first equation above, we get

λεE + λ−1 curl
(
µ−1 curlE

)
+ σE = εF + λ−1 curlG. (2.8)

To solve this problem, we thus look for a function E ∈ H0(curl,Ω) satisfying

aλ(E,E
′) =

∫
Ω

(εF · Ē′ + λ−1G · curl Ē′), ∀E′ ∈ H0(curl,Ω), (2.9)

aλ(E,E
′) :=

∫
Ω

(
(λε+ σ)E · Ē′ + λ−1µ−1 curlE · curl Ē′).

The sesquilinear form aλ is continuous, symmetric and coercive in H0(curl,Ω) as

aλ(E,E) ≥
∫
Ω

(
λη|E|2 + (λ∥µ∥∞)−1| curlE|2

)
.

Therefore (2.9) has a unique solution E ∈ H0(curl,Ω). Testing by E′ ∈ D(Ω)3, we
find that E satisfies (2.8) in the distributional sense.
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To check the divergence constraint for E, into (2.9) we insert the gradient of the

0-extension ψ̃ of a test function ψ ∈ D(Ω0) obtaining∫
Ω

(
λεE + σE − εF

)
· ∇ψ̃ = 0.

Since σ and ψ have disjoint supports, it follows∫
Ω0

(λεE − εF ) · ∇ψ = 0, ∀ψ ∈ D(Ω0),

which means

λ div(εE) = div(εF ) = 0 in Ω0

distributionally, where F ∈ Hσ(divε = 0,Ω) is used.
Now we can define H by (2.7), so that the second component of (2.6) is true.

This map then belongs to H0(divµ = 0,Ω) because of G ∈ H0(divµ = 0,Ω) and
E ∈ H0(curl,Ω), see Corollary 3.1.16 in [3] for the normal trace. Finally, (2.8)
becomes

λεE − curlH + σE = εF,

which shows that (E,H)⊤ is contained in D(A) and solves (2.6). □

3. Strong stability

One simple way to prove the strong stability of (1.1) is provided by the following
theorem due to Arendt–Batty and Lyubich–Vũ (see [2, 21]).

Theorem 3.1. Let X be a reflexive Banach space and (T (t))t≥0 be a C0-semigroup
generated by A on X. Assume that (T (t))t≥0 is bounded and that no eigenvalues
of A lie on the imaginary axis. If σ(A)∩ iR is countable, then (T (t))t≥0 is strongly
stable in the sense that

lim
t→∞

T (t)x = 0, ∀x ∈ X.

Since the resolvent A is not necessarily compact, we have to analyze the full spec-
trum on the imaginary axis. This is done in the next lemmas, using the following
assumption.
(H) Let Ω ⊆ R3 be open, bounded and simply connected, Ω+,Ω0 ̸= ∅, Γ = ∂Ω,
∂Ω+ and ∂Ω0 be Lipschitz, and ∂Ω0∩Γ be a Lipschitz submanifold of Γ. Moreover,
let ε, µ ∈W 1,∞(Ω,R3×3

sym) and σ ∈ L∞(G,R) satisfy (1.2).
By ν0 we denote the outer unit normal of ∂Ω0.

Lemma 3.2. Let (H) hold. Then iωI−A is injective for each ω ∈ R \ {0}.

Proof. Fix ω ∈ R \ {0}, and let (E,H)⊤ ∈ ker(iωI−A). This pair then satisfies

iωεE − curlH + σE = 0, (3.1)

iωµH + curlE = 0. (3.2)

First, the dissipation property (2.5) yields

0 = ℜ
(
(iωI−A)(E,H)⊤, (E,H)⊤

)
H

= −
∫
Ω

σ|E|2

and therefore

σE = 0 in Ω, (3.3)

implying also that

E = 0 in Ω+. (3.4)

Coming back to (3.1), we find

iωεE − curlH = 0,
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and therefore εE is divergence-free. By (3.4) and (3.2) the fields (E,H)⊤ vanish on
a ball in Ω. (Recall that Ω+ is open and non-empty.) Hence, they are zero on Ω by
the backward uniqueness result Corollary 1.2 in [22]. (See the text following this
result and also Corollary 1.2 in [15].) Here we need that ε and µ are Lipschitz. □

We next determine the kernel of A which could be non-zero because of initial
charges located in Ω0.

Lemma 3.3. Let (H) hold. We then have

kerA = K̃N,ε(Ω0)× {0}

with the space

K̃N,ε(Ω0) := {Ẽ : E ∈ KN,ε(Ω0)},
where Ẽ is the extension of E by zero outside Ω0.

Proof. Let (Ẽ,H)⊤ ∈ kerA. As in the previous proof Ẽ then satisfies (3.3) and
(3.4), which yields

curlH = 0 = curl Ẽ. (3.5)

Hence, H belongs to KT,µ(Ω) and is thus zero by Dominguez’ theorem as Ω is
simply connected, see Theorem 6.2.5 in [3] or Proposition 3.14 in [1] if µ = 1.

Furthermore, since Ẽ = 0 on Ω+ and Ẽ ∈ H0(curl,Ω), Propositions 2.2.32 and

2.1.60 of [3] show that Ẽ × ν0 = 0 on ∂Ω0. (The extra regularity of ∂Ω0 is used

here.) So (Ẽ,H)⊤ ∈ H and (3.5) imply that E is contained in KN,ε(Ω0).

For the converse inclusion, take (Ẽ,H)⊤ ∈ K̃N,ε(Ω0) × {0}. Then Ẽ belongs to

H0(curl,Ω) and curl Ẽ = 0 by Proposition 2.2.32 of [3]. As a result, (Ẽ,H)⊤ is
contained in the kernel of A. □

For the proof of the surjectivity of iωI−A, we cannot use the same arguments as
in Lemma 2.1 because aiω is either not coercive in H0(curl,Ω) anymore if ω ̸= 0, or
not defined if ω = 0. Instead, the case ω ̸= 0 is treated via a compact perturbation
combined with the injectivity property of Lemma 3.2. The case ω = 0 is more
delicate and will be considered in the next section under additional assumptions.

Lemma 3.4. Let (H) hold. Then iωI−A is surjective for each ω ∈ R \ {0}.

Proof. Fix ω ∈ R \ {0} and (F,G)⊤ ∈ H. We are looking for (E,H)⊤ ∈ D(A) with

iω(E,H)⊤ −A(E,H)⊤ = (F,G)⊤. (3.6)

or equivalently

iωεE − curlH + σE = εF, (3.7)

iωµH + curlE = µG. (3.8)

The first equation can be rewritten as

E = (σI+ iωε)−1(curlH + εF ). (3.9)

Inserting this expression in the second equation, we infer

iωµH + curl
(
(σI+ iωε)−1(curlH + εF )

)
= µG.

We thus look for a function H ∈ XT,µ(Ω) solving

biω(H,H
′) =

∫
Ω

(
µG · H̄ ′ − ((σI+ iωε)−1εF ) · curl H̄ ′), ∀H ′ ∈ XT,µ(Ω), (3.10)

biω(H,H
′) :=

∫
Ω

(
iωµH · H̄ ′ + (σI+ iωε)−1 curlH · curl H̄ ′ + div(µH) div(µH̄ ′)

)
.
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This sesquilinear form is not coercive on XT,µ(Ω), but we use a perturbation
argument. Namely, we introduce the form

ciω(H,H
′) =

∫
Ω

(
H · H̄ ′ + (σI+ iωε)−1 curlH · curl H̄ ′ + div(µH) div(µH̄ ′)

)
,

on XT,µ(Ω) and show that eiθciω is coercive for some θ ∈ (−π
2 ,

π
2 ). Indeed, we have

ℜ
(
eiθciω(H,H)

)
=

∫
Ω

[
ω sin θ

(
ε(σ2I+ ω2ε2)−1 curlH

)
· curl H̄

+ cos θ
(
|H|2+ |div(µH)|2+

(
σ(σ2I+ ω2ε2)−1curlH

)
· curl H̄

)]
since σI and ε commute. Therefore if ω > 0, we choose θ ∈ (0, π2 ) so that cos θ > 0
and sin θ > 0 so that

ℜ(eiθciω(H,H)) ≥ C

∫
Ω

(
|H|2 + |div(µH)|2 + | curlH|2

)
,

with a positive constant C that depends on ω, θ and σ. On the contrary, if ω < 0,
we chose θ ∈ (−π

2 , 0) so that cos θ > 0 and sin θ < 0 and find the same estimate
with another positive constant C. We next define the continuous operators

Biω : XT,µ(Ω) → XT,µ(Ω)
′, H 7→ BiωH; Ciω : XT,µ(Ω) → XT,µ(Ω)

′, H 7→ CiωH,

by setting

⟨BiωH,H
′⟩ = biω(H,H

′), ⟨CiωH,H
′⟩ = ciω(H,H

′), ∀H,H ′ ∈ XT,µ(Ω).

Thanks to the Lax–Milgram lemma, the coercivity of eiθciω implies that the oper-
ator Ciω is an isomorphism. Observe that

Biω − Ciω = iωµ− I,
and that XT,µ(Ω) is compactly embedded into L2(Ω)3 due to Theorem 7.5.3 in [3].
Hence, Biω is a Fredholm operator of index zero.
To show kerBiω = {0}, we take H ∈ kerBiω. Then it fulfills∫

Ω

(
iωµH · H̄ ′ + (σI+ iωε)−1 curlH · curl H̄ ′ + div(µH) div(µH̄ ′)

)
= 0 (3.11)

for all H ′ ∈ XT,µ(Ω). Let us first prove that µH is divergence free (cf. [8, Theorem
1.2] or [10, Theorem 1.1]). We introduce the divergence-form operator ∆µ

Dir by

∆µψ = div(µ∇ψ), D(∆µ
Dir) = {ψ ∈ H1

0 (Ω)|∆µψ ∈ L2(Ω)}
with Dirichlet boundary condition. For φ ∈ D(∆µ

Dir), in (3.11) we take H ′ = ∇φ
and obtain ∫

Ω

(
iωµH · ∇φ̄+ div(µH) div(µ∇φ̄)

)
= 0. (3.12)

Green’s formula then yields∫
Ω

div(µH)
(
iωφ̄− div(µ∇φ̄)

)
= 0.

Since the range of the operator iωI −∆µ
Dir is the whole L2(Ω), we deduce that H

belongs to H0(divµ = 0,Ω).
Coming back to (3.11), we set

E = (σI+ iωε)−1 curlH ∈ L2(Ω)3.

Then (3.1) is true and (3.11) leads to∫
Ω

(
iωµH · H̄ ′ + E · curl H̄ ′) = 0, ∀H ′ ∈ XT,µ(Ω). (3.13)

Inserting H ′ ∈ D(Ω)3 ⊆ XT,µ(Ω), we find that also (3.2) holds and thus E ∈
H(curl,Ω).
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To show E × ν = 0 on Γ, we extend (3.13) to test functions in H1(Ω)3, namely∫
Ω

(
iωµH · Φ̄ + E · curl Φ̄

)
= 0, ∀Φ ∈ H1(Ω)3. (3.14)

Indeed, for a given Φ ∈ H1(Ω)3 we can consider its Helmholtz decomposition

Φ = ∇ψ +H ′

with ψ ∈ H1(Ω), H ′ ∈ XT,µ(Ω) and div(µH ′) = 0, see (6.37) in [3]. Consequently,∫
Ω

(
iωµH · Φ̄ + E · curl Φ̄

)
= iω

∫
Ω

µH · ∇ψ̄ +

∫
Ω

(
iωµH · H̄ ′ + E · curl H̄ ′).

The second term on the right-hand side is zero due to (3.13), while its first term
disappears using Green’s formula and H ∈ H0(divµ = 0,Ω). This proves (3.14).

In (3.14) we can apply Green’s formula and (3.2) to find

⟨E × ν,Φ⟩
H− 1

2 (Γ)
= 0, ∀Φ ∈ H1(Ω)3,

in the H− 1
2 -H

1
2 -duality. The surjectity of the trace map then yields

E × ν = 0 on Γ. (3.15)

Since the definition of E directly implies that

div(εE) = 0 in Ω0,

we conclude that the fields (E,H)⊤ belong to ker(iωI−A). Lemma 3.2 then shows
E = H = 0, i.e., kerBiω = {0}.

Now we can come back to (3.10) and conclude that this problem has a unique
solution H ∈ XT,µ(Ω). We then define E ∈ L2(Ω)3 by (3.9) and have to show that
(E,H)⊤ belongs to D(A) and solves (3.6).
First, (3.7) is trivially satisfied by the definition of E. The divergence-free prop-

erty of E directly follows from this identity and div(εF ) = 0 on Ω0. Next in (3.10)
we take test functions H ′ = ∇φ with φ ∈ D(∆µ

Dir). Then H satisfies (3.12) since
G ∈ H0(divµ = 0,Ω). As before, we infer div(µH) = 0. Finally, equations (3.9)
and (3.10) lead to∫

Ω

(
iωµH · H̄ ′ + E · curl H̄ ′) = ∫

Ω

µG · H̄ ′, ∀H ′ ∈ XT,µ(Ω).

As for G = 0 above, we arrive at (3.8) and (3.15). This shows that (E,H)⊤ belongs
to D(A) and solves (3.6). □

The surjectivity of A is a delicate question, so at this stage we first prove that
kerA is orthogonal to the range of A.

Lemma 3.5. Let (H) hold. For the scalar product in H, we then have

R(A)⊥ = kerA.

Proof. Green’s formula and Lemma 3.3 imply

kerA ⊆ R(A)⊥.

To show the converse inclusion, let (E′, H ′)⊤ ∈ R(A)⊥. So (E′, H ′)⊤ ∈ H satisfies∫
Ω

(
(curlH − σE) · Ē′ − curlE · H̄ ′) = 0, ∀ (E,H)⊤ ∈ D(A). (3.16)

In a first step, we take an arbitrary Ψ ∈ D(Ω)3 and consider the unique solution
φ ∈ H1

0 (Ω0) of ∫
Ω0

ε∇φ · ∇χ̄ =

∫
Ω0

εΨ · ∇χ̄, ∀χ ∈ H1
0 (Ω0).
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Let φ̃ be the extension of φ by zero outside Ω0. Then the pair (Ψ−∇φ̃, 0)⊤ belongs
to D(A). Note that σ∇φ̃ = 0 by the supports. Using (Ψ − ∇φ̃, 0)⊤ in (3.16), we
thus obtain ∫

Ω

(
σΨ · Ē′ + curlΨ · H̄ ′) = 0.

Since Ψ is arbitrary in D(Ω)3, we find

curlH ′ + σE′ = 0. (3.17)

In a similar manner, pick Φ ∈ D(Ω)3 and consider the unique solution φ ∈
H1(Ω)/C of ∫

Ω

µ∇φ · ∇χ̄ =

∫
Ω

µΦ · ∇χ̄, ∀χ ∈ H1(Ω). (3.18)

Then the pair (0,Φ−∇φ)⊤ is contained in D(A). Inserting it into (3.16), we deduce∫
Ω

curl Φ · Ē′ = 0 (3.19)

which means

curlE′ = 0. (3.20)

Now we repeat this argument with Φ ∈ H1(Ω)3 and φ ∈ H1(Ω)/C solving (3.18).
This again yields (3.19). Green’s formula and (3.20) then lead to

⟨E′ × ν,Φ⟩
H− 1

2 (Γ)
= 0,

and therefore

E′ × ν = 0 on Γ.

This property combined with (3.17) and (3.20) implies that (E′, H ′) ∈ D(A). Using
Green’s formula, we also infer

0 =

∫
Ω

(
(curlH ′ + σE′) · Ē′ − curlE′ · H̄ ′) = ∫

Ω

σ|E′|2.

Since then σE′ = 0, we conclude curlH ′ = 0 and thus A(E′, H ′)⊤ = 0. □

This proof indeed shows that D(A∗) = D(A) and

A∗(E′, H ′)⊤ = (−(curlH ′ + σE′), curlE′)⊤, ∀ (E′, H ′)⊤ ∈ D(A∗). (3.21)

In order to formulate a strong stability result, using Lemma 3.5 we introduce
H⊥ = (kerA)⊥ = R(A) in H and the restriction A⊥ of A to H⊥ defined by

A⊥(E,H)⊤ = A(E,H)⊤, ∀ (E,H)⊤ ∈ D(A⊥) = D(A) ∩H⊥.

Clearly, A⊥ maps D(A⊥) into H⊥. Since e
tA leaves invariant R(A), its restriction

to this space is generated by A⊥. The above lemmas and Theorem 3.1 yield the
following strong stability result.

Theorem 3.6. Let (H) hold. Then A⊥ has no eigenvalue on iR and

iR \ {0} ⊆ ρ(A⊥).

Therefore the semigroup generated by A⊥ is strongly stable in H⊥.
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Ω Ω+,1

Ω+,2 Ω+,3Ω0,1 Ω0,2

Figure 1. An illustration of our assumptions (A0)–(A2) with
Ω+ in red and Ω0 in white.

4. The closed range property

Lemma 3.5 shows that 0 ∈ ρ(A⊥) if and only if R(A) is closed. In this section we
give some (sufficient) additional conditions that guarantee this property, namely
(see Figures 1-4 for some illustrations):

(A0) Let (H) hold and Γ be connected. Assume there exist a finite set K and
disjoint,1 connected, open and non-empty sets Ω+,k with Lipschitz boundaries Γk

such that
Ω+ =

⋃
k∈K

Ω+,k.

(A1) If Ω+,k ∩ Γ = ∅, then its boundary Γk is assumed to be connected. Denote
by Kint the index set of such subdomains.
(A2) If Ω+,k∩Γ ̸= ∅, then we assume that this set is of positive (relative) measure.
We will set Kbdy = K \Kint.
(A3) There exists a positive constant σ− such that

σ ≥ σ− on Ω+,k, ∀ k ∈ K. (4.1)

The connected, disjoint and open components of Ω0 are denoted by Ω0,j for j ∈ J,
the index set J being finite due to our assumptions. For each j ∈ J, the boundary
of Ω0,j is not necessarily connected. Following the notations from [1], we then
decompose ∂Ω0,j as

∂Ω0,j =
⋃Ij

i=0
Γj,i,

where Γj,i are the different connected components of ∂Ω0,j and Γj,0 is the boundary
of the sole unbounded connected component of R3 \Ω0,j . Then according to Propo-
sition 6.1.1 in [3], see Proposition 3.18 in [1] for ε = 1, the space KN,ε(Ω0,j) has
a finite dimension Ij := dimKN,ε(Ω0,j) equal to the number of connected compo-
nents of ∂Ω0,j minus 1. For i ∈ Ij := {1, · · · , Ij} we introduce the unique solution
φ0,j,i ∈ H1(Ω0,j) of

div(ε∇φ0,j,i) = 0 in Ω0,j ,

φ0,j,i = 1 on Γj,i, (4.2)

φ0,j,i = 0 on Γj,i′ , ∀ i′ ̸= i.

1meaning that Ω+,k ∩ Ω+,k′ = ∅ if k ̸= k′
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Ω Ω+,1 OΩ0,1

Figure 2. The assumption (A0) is not satisfied: the boundary of
Ω is not connected since O ⊆ R3 \ Ω.

Ω Ω+,1

Ω+,2

Ω0,1

Ω0,2
Ω0,2

Figure 3. The assumption (A1) is not satisfied: the boundary of
Ω+,2 is not connected.

Then KN,ε(Ω0,j) is spanned by the set of functions ∇φ0,j,i with i = 1, · · · , Ij since
they belong to KN,ε(Ω0,j) and are linearly independent. These functions are now
extended into φ̃0,j,i to the whole Ω by

φ̃0,j,i =

{
1 in Uj,i,

0 on Uj,i′ , i
′ ̸= i,

for the connected components Uj,i of Ω∩ (R3 \Ω0,j) with i = 0, · · · , Ij , where Uj,0

is included into the sole unbounded connected component of R3 \Ω0,j . With these
notations, Lemma 3.3 directly leads to the next result.

Corollary 4.1. Let (A0)–(A2) hold. Then we have

kerA = K̃N,ε(Ω0)× {0} = span{(∇φ̃0,j,i, 0)
⊤ : i = 1, · · · , Ij , j ∈ J}.

Inspired by [11, Lemma 2.2], we first prove a Poincaré-type inequality.
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Ω Ω+,1

Ω+,2 Ω+,3Ω0,1 Ω0,2

Figure 4. The assumption (A2) is not satisfied: meas Ω+,1 ∩ Γ = 0.

Lemma 4.2. Under assumptions (A0)–(A2), it holds

∥E∥Ω0
≲ ∥E∥Ω+

+ ∥ curlE∥Ω (4.3)

for all E ∈ Hσ(divε = 0,Ω)∩H0(curl,Ω)∩(K̃N,ε(Ω0))
⊥, where (K̃N,ε(Ω0))

⊥ means

here the orthogonal complement of K̃N,ε(Ω0) in L
2
ε(Ω)

3.

Proof. Fix E ∈ Hσ(divε = 0,Ω) ∩ H0(curl,Ω) ∩ (K̃N,ε(Ω0))
⊥. Since Ω is simply

connected, by Theorem 6.1.4 in [3] (or Theorem 3.17 in [1] if ε = 1) there exists a
unique w ∈ XN,ε(Ω) ∩H(divε = 0,Ω) such that

curlw = curlE in Ω,

and

∥w∥H(curl,Ω) ≲ ∥ curlE∥Ω. (4.4)

Further, as Γ is connected, Proposition 3.3.9 of [3] provides a map φ ∈ H1
0 (Ω) with

E = w −∇φ in Ω. (4.5)

This identity and (4.4) directly imply that

∥∇φ∥Ω+
≲ ∥E∥Ω+

+ ∥ curlE∥Ω. (4.6)

A priori this estimate gives no control on the L2-norm of φ in Ω+, needed below to
apply the trace theorem. But Poincaré’s inequality and assumption (A2) yield

∥φ∥1,Ω+,k
≲ ∥∇φ∥Ω+,k

≲ ∥E∥Ω+
+ ∥ curlE∥Ω, ∀ k ∈ Kbdy. (4.7)

Our goal is to prove a similar estimate for k ∈ Kint. For that purpose, by (4.5)
and the fact that εw and εE are divergence free in Ω0, we have

div(ε∇φ) = 0 in Ω0. (4.8)

Moreover, since E ∈ (K̃N,ε(Ω0))
⊥, Corollary 4.1 leads to∫

Ω0,j

εE · ∇φ0,j,i = 0, ∀ i = 1, · · · , Ij , j ∈ J. (4.9)

Now for j ∈ J and i ∈ Ij we note that there exists a unique index

kj,i ∈ Kint such that Γj,i = ∂Ω+,kj,i .
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We fix j ∈ J, i ∈ Ij , and kj,i ∈ Kint as above. The divergence-free property of w in
Ω+,kj,i

implies ∫
Γj,i

εw · ν0 = 0.

Using also φ0,j,i = 1 on Γj,i, Green’s formula then yields∫
Ω0,j

εw · ∇φ0,j,i = −
∫
Ω0,j

div(εw)φ0,j,i +

∫
∂Ω0,j

(εw · ν0)φ0,j,i = 0. (4.10)

Combining the formulas (4.5), (4.9) and (4.10), we deduce that∫
Ω0,j

∇φ · ε∇φ0,j,i = 0, ∀ i ∈ Ij , j ∈ J.

Green’s formula then directly leads to∫
∂Ω0,j

φν0 · ε∇φ0,j,i = 0,

∑
i′∈Ij

∫
Γj,i′

φν0 · ε∇φ0,j,i = −
∫
Γj,0

φν0 · ε∇φ0,j,i, ∀ i ∈ Ij .

Since φ = 0 on Γ, the integral on the right reduces to the intersection between Γj,0

and some Γk with k ∈ Kbdy, and therefore∑
i′∈Ij

∫
Γj,i′

φν0 · ε∇φ0,j,i = −
∑

k∈Kbdy

∫
Γj,0∩Γk

φν0 · ε∇φ0,j,i, ∀ i ∈ Ij .

Observe that ∣∣∣∣∣
∫
Γj,0∩Γk

φν0 · ε∇φ0,j,i

∣∣∣∣∣ ≲ ∥φ∥0,Γk
≲ ∥φ∥1,Ω+,k

.

by Cauchy–Schwarz and the trace theorem. In view of (4.7) we arrive at∣∣∣∣∣∣
∑
i′∈I+

∫
Γj,i′

φν0 · ε∇φ0,j,i

∣∣∣∣∣∣ ≲ ∥E∥Ω+ + ∥ curlE∥Ω, ∀ i ∈ Ij . (4.11)

Setting O+,j =
⋃

i∈Ij
Ω+,kj,i , we assert that the Poincaré inequality

∥φ∥1,O+,j ≲ ∥∇φ∥Oj +
∑
i∈Ij

∣∣∣∣∣∣
∑
i′∈Ij

∫
Γj,i′

φν0 · ε∇φ0,j,i

∣∣∣∣∣∣ (4.12)

holds. Indeed by a contradiction argument and the compact embedding ofH1(O+,j)
into L2(O+,j), it suffices to show that if this right-hand side is zero, then the left-
hand side has to vanish. So let the right-hand side be zero. Then the nullity of the
first term yields

φ = ci′ on Ω+,kj,i′

for some ci′ ∈ C and all i′ ∈ Ij . From the vanishing second term we thus obtain∑
i′∈Ij

∫
Γj,i′

ci′ ν0 · ε∇φ0,j,i = 0, ∀ i ∈ Ij .

On Ω0,j we define the function

ψ =
∑
i′∈Ij

ci′φ0,j,i′
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and note that it is equal to ci on Γj,i for i ∈ Ij and equal to zero on the remaining
part of ∂Ω0,j by the properties of φ0,j,i′ , see (4.2). Hence the previous identity
means that ∫

∂Ω0,j

ψ ν0 · ε∇φ0,j,i = 0, ∀ i ∈ Ij .

Since div(ε∇φ0,j,i) = 0, Green’s formula yields∫
Ω0,j

∇ψ · ε∇φ0,j,i = 0, ∀ i ∈ Ij .

Multiplying this equality by ci and summing on i ∈ Ij , we get∫
Ω0,j

∇ψ · ε∇ψ̄ = 0.

This fact implies that ψ = 0 (because ψ = 0 on Γj,0), and then ci = 0 for all i ∈ Ij
by the linear independence of {φ0,j,i′ : i

′ ∈ Ij}. We have shown (4.12).
Inserting (4.11) into (4.12) and using (4.6), we derive

∥φ∥1,O+,j ≲ ∥∇φ∥O+,j + ∥E∥Ω+ + ∥ curlE∥Ω ≲ ∥E∥Ω+ + ∥ curlE∥Ω, ∀ j ∈ J.

Since any Ω+,k with k ∈ Kint is included into one O+,j , this estimate implies that

∥φ∥1,Ω+,k
≲ ∥E∥Ω+ + ∥ curlE∥Ω, ∀ k ∈ Kint. (4.13)

Let us again fix j ∈ J. Taking into account (4.8), we deduce that

∥∇φ∥Ω0,j
≲ ∥φ∥

H
1
2 (∂Ω0,j)

≲ ∥φ∥
H

1
2 (Γj,0)

+
∑
i∈Ij

∥φ∥
H

1
2 (Γj,i)

, (4.14)

recalling that ∂Ω0,j =
⋃Ij

i=0 Γj,i and that the sets Γj,i are disjoint. On one hand,
for i ∈ Ij , the component Γj,i is a part of some Γk with k ∈ Kint. Then the trace
theorem and (4.13) lead to

∥φ∥
H

1
2 (Γj,i)

≲ ∥E∥Ω+
+ ∥ curlE∥Ω, ∀ i ∈ Ij . (4.15)

On the other hand, as φ = 0 on Γ, for Γj,0 we have

∥φ∥
H

1
2 (Γj,0)

=
∑

k∈Kbdy

∥φ∥
H̃

1
2 (Γj,0∩Γk)

,

cf. Definition 2.1.53 in [3]. Therefore, again by the trace theorem we deduce

∥φ∥
H

1
2 (Γj,0)

≲
∑

k∈Kbdy

∥φ∥1,Ω+,k
,

so that (4.7) yields
∥φ∥

H
1
2 (Γj,0)

≲ ∥E∥Ω+
+ ∥ curlE∥Ω. (4.16)

Estimates (4.14), (4.15), and (4.16) show

∥∇φ∥Ω0,j
≲ ∥E∥Ω+

+ ∥ curlE∥Ω, ∀ j ∈ J,

and therefore
∥∇φ∥Ω0 ≲ ∥E∥Ω+ + ∥ curlE∥Ω.

Combined with (4.6) we arrive at

∥∇φ∥Ω ≲ ∥E∥Ω+ + ∥ curlE∥Ω.
This inequality, (4.4), and the decomposition (4.5) lead to the assertion (4.3). □

From this result we deduce the core property to show the closedness of R(A).

Lemma 4.3. Under assumptions (A0)–(A3), we have

∥(E,H)⊤∥H ≲ ∥A(E,H)⊤∥H, ∀ (E,H)⊤ ∈ D(A⊥). (4.17)
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Proof. Suppose that (4.17) does not hold. Then there exist fields (En, Hn)
⊤ ∈

D(A⊥) satisfying

∥(En, Hn)
⊤∥H = 1, ∀n ∈ N, (4.18)

and

∥A(En, Hn)
⊤∥H → 0 as n→ ∞. (4.19)

The dissipation identity (2.5) and (4.18) imply∫
Ω

σ|En|2 ≤ ∥A(En, Hn)
⊤∥H.

Using properties (4.1) and (4.19), we infer

∥En∥Ω+
→ 0 as n→ ∞.

The limit (4.19) then leads to

∥ curlEn∥Ω + ∥ curlHn∥Ω → 0 as n→ ∞. (4.20)

From these two statements and Lemma 4.2 we conclude

∥En∥Ω → 0 as n→ ∞.

As Ω is simply connected and Hn ∈ H0(divµ = 0,Ω), Theorem 6.2.5 of [3] gives

∥Hn∥Ω ≲ ∥ curlHn∥Ω,

so that (4.20) yields

∥Hn∥Ω → 0 as n→ ∞.

We now arrive at a contradiction with (4.18). □

Proposition 4.4. Under assumptions (A0)–(A3), the range R(A) is closed.

Proof. As R(A) = R(A⊥), it suffices to prove the closedness of R(A⊥). So let
((En, Hn)

⊤)n∈N in D(A⊥) have the limit

A(En, Hn)
⊤ → (F,G)⊤ in H. (4.21)

Applying estimate (4.17) to (En, Hn)
⊤ − (Em, Hm)⊤ with n,m ∈ N, we deduce

that ((En, Hn)
⊤)n∈N is a Cauchy sequence in H⊥. Let (E,H)⊤ ∈ H⊥ be its limit.

This property and (4.21) imply

curlHn → εF + σE and curlEn → µG

in L2(Ω)3 as n→ ∞. Since

curlEn → curlE and curlHn → curlH

in D′(Ω)3 as n→ ∞, we deduce that

curlE = µG and curlH = εF + σE.

Hence, E and H belong to H(curl,Ω) and E is the limit of En in this space,
implying E ∈ H0(curl,Ω). Consequently, (E,H)⊤ is contained in D(A⊥) and
satisfies A(E,H)⊤ = (F,G)⊤. □

Combined with Lemma 3.5 and Corollary 3.6 the above result shows that A⊥
has no spectrum on iR.

Corollary 4.5. Under assumptions (A0)–(A3), A⊥ is invertible and therefore

iR ⊆ ρ(A⊥).
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5. A polynomial stability result in a cube

Our theorem on polynomial decay is based on the next result shown in Theo-
rem 2.4 of [6]. See also [4, 5, 20] for weaker variants, partly in more general settings.

Lemma 5.1. A bounded C0 semigroup (etL)t≥0 on a Hilbert space X satisfies

||etLU0||X ≤ C t−
1
l ||U0||D(L), ∀U0 ∈ D(L), t ≥ 1,

for some constants C, l > 0 if we have

ρ(L) ⊇
{
iβ

∣∣ β ∈ R
}
= iR (5.1)

and

lim sup
|β|→∞

1

βl
∥(iβ − L)−1∥ <∞. (5.2)

We will combine this criterion with the Fourier series expansion technique devel-
oped in Example 3 of [20] for the scalar wave equation, which has to be adapted
to our Maxwell system. For that reason, in this section we restrict ourselves to the
case of a domain Ω that is the cube (0, π)3 and to ε = µ = 1. In such a case, the
Maxwell eigenmodes are explicitly known due to [9]. To recall these results, we
introduce the Maxwell operator A0 on H0 := H(div = 0,Ω)×H0(div = 0,Ω) by

A0(E,H)⊤ = (curlH,− curlE)⊤, ∀ (E,H)⊤ ∈ D(A0),

with

D(A0) =
(
XN (Ω) ∩H(div = 0,Ω)

)
×

(
XT (Ω) ∩H(div = 0,Ω)

)
.

As a direct consequence of Lemma 2.1, Theorem 3.5 and Section 4 of [9], the
eigenfunctions of A0 are made of two families, namely the TE and TM modes:

1. TE modes. For all k = (k1, k2, k3) ∈ KTE = {(k1, k2) ∈ N2 : k1 + k2 >
0} × N∗, we set2

κTE
k =

√
k21 + k22 + k23,

ΨTE,±
k = (ETE

k ,∓(iκTE
k )−1 curlETE

k )⊤,

ETE
k (x1, x2, x3) = wDir

k3
(x3)

(
curl⊥ v

Neu
k1,k2

(x1, x2)

0

)
. (5.3)

Here wDir
k3

(x3) =
√

2/π sin(k3x3) are the orthonormal eigenvectors of the Laplace
operator with Dirichlet boundary condition on the interval (0, π),

vNeu
k1,k2

(x1, x2) =
2
π cos(k1x1) cos(k2x2)

are the orthonormal eigenvectors of the Laplace operator with Neumann boundary
condition on the square (0, π)2, and curl⊥ is the two-dimensional curl of a scalar
field, i.e.,

curl⊥ v =

(
∂2v
−∂1v

)
.

2. TM modes. For all k = (k1, k2, k3) ∈ KTM = (N∗)2 × N, we set

κTM
k =

√
k21 + k22 + k23,

ΨTM,±
k = (ETM

k ,∓(iκTM
k )−1 curlETM

k )⊤,

ETM
k (x1, x2, x3) = ∂3w

Neu
k3

(x3)

(
∇⊥v

Dir
k1,k2

(x1, x2)

0

)
(5.4)

2N∗ means N \ {0} and Z∗ = Z \ {0}.
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+ (k21 + k22)w
Neu
k3

(x3)

(
0

vDir
k1,k2

(x1, x2)

)
.

Here wNeu
k3

(x3) =
√
2/π cos(k3x3) are the orthonormal eigenvectors of the Laplace

operator with Neumann boundary condition on the interval (0, π),

vDir
k1,k2

(x1, x2) =
2
π sin(k1x1) sin(k2x2)

are the orthonormal eigenvectors of the Laplace operator with Dirichlet boundary
condition on the square (0, π)2, and ∇⊥ is the two-dimensional gradient of a scalar
field, i.e.,

∇⊥v =

(
∂1v
∂2v

)
.

The family {ETE
k , k ∈ KTE} ∪ {ETM

k , k ∈ KTE} forms an orthogonal basis of
L2(Ω)3. Completeness is shown in Theorem 3.5 of [9] and the orthogonality is easily
checked. With these notations, the spectrum of A0 is given by

σ(A0) = {±iκTE
k }k∈KTE ∪ {±iκTM

k }k∈KTM .

For all k ∈ KTE , ΨTE,±
k is the eigenvector of A0 for the eigenvalue ±iκTE

k , while for

all k ∈ KTM , ΨTM,±
k is the eigenvector of A0 for the eigenvalue ±iκTM

k . Finally,
the set

{ΨTE,+
k }k∈KTE ∪ {ΨTE,−

k }k∈KTE ∪ {ΨTM,+
k }k∈KTM ∪ {ΨTM,−

k }k∈KTM

forms an orthogonal basis of H0.
We still have to normalize these eigenfunctions. To this aim, we first note that

curl⊥ v
Neu
k1,k2

(x1, x2) =
2

π

(
−k2 cos(k1x1) sin(k2x2)
k1 sin(k1x1) cos(k2x2)

)
, (5.5)

curlETE
k (x1, x2, x3) =

 ∂3w
Dir
k3

(x3)∂1v
Neu
k1,k2

(x1, x2)

∂3w
Dir
k3

(x3)∂2v
Neu
k1,k2

(x1, x2)

−wDir
k3

(x3)∆⊥v
Neu
k1,k2

(x1, x2)


=

23/2

π3/2

 −k1k3 cos(k3x3) sin(k1x1) cos(k2x2)
−k2k3 cos(k3x3) cos(k1x1) sin(k2x2)

(k21 + k22) sin(k3x3) cos(k1x1) cos(k2x2)

 ,

and hence ∥ETE
k ∥2Ω = k21 + k22 as well as ∥ curlETE

k ∥2Ω = (k21 + k22)(κ
TE
k )2. Setting

sj(x) = sin(kjxj) and cj(x) = cos(kjxj), we further compute

∇⊥v
Dir
k1,k2

(x1, x2) =
2

π

(
k1 cos(k1x1) sin(k2x2)
k2 sin(k1x1) cos(k2x2)

)
, (5.6)

curlETE
k (x) =

23/2

π3/2

 k2(k
2
1 + k22)c3(x)s1(x)c2(x) + k2k

2
3c3(x)s1(x)c2(x)

−k1k23c3(x)c1(x)s2(x)− k1(k
2
1 + k22)c3(x)c1(x)s2(x)

−k1k2k3s3(x)c1(x)c2(x) + k1k2k3s3(x)c1(x)c2(x)


and obtain ∥ETM

k ∥2Ω = (k21+k
2
2)(κ

TE
k )2 as well as ∥ curlETM

k ∥2Ω = (k21+k
2
2)(κ

TE
k )4.

This results in the norms

∥ΨTE,±
k ∥2H0

= 2(k21 + k22), ∀ k = (k1, k2, k3) ∈ KTE ,

∥ΨTM,±
k ∥2H0

= 2(k21 + k22)(k
2
1 + k22 + k23), ∀ k = (k1, k2, k3) ∈ KTE .

With the normalized functions

Ψ̂TE,±
k :=

1√
2(k21 + k22)

ΨTE,±
k , Ψ̂TM,±

k :=
1

κTM
k

√
2(k21 + k22)

ΨTE,±
k , (5.7)
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the set

{Ψ̂TE,+
k }k∈KTE ∪ {Ψ̂TE,−

k }k∈KTE ∪ {Ψ̂TM,+
k }k∈KTM ∪ {Ψ̂TM,−

k }k∈KTM

then forms an orthonormal basis of H0. Clearly some eigenvalues may coincide,
but all have finite multiplicity. We thus rearrange them in increasing order (on the
imaginary axis) writing

σ(A0) = {iλℓ}ℓ∈Z∗

with λ−1 < 0 < λ1, λℓ < λℓ+1, λ−(ℓ+1) < λ−ℓ, ∀ ℓ ∈ N∗.

Denoting the multiplicity of iλℓ by Nℓ, we let Φℓ,j , j = 1, . . . , Nℓ, be the Nℓ

orthornormal eigenvectors associated with iλℓ. If λℓ > 0 (resp. λℓ < 0), these

eigenvectors are equal to Ψ̂TE,+
k (resp. Ψ̂TE,−

k ) with κTE
k = λℓ and k ∈ KTE , or

equal to Ψ̂TM,+
k (resp. Ψ̂TM,−

k ) with κTM
k = λℓ and k ∈ KTM .

We now state the main result of this paper which provides polynomial stability of
etA on the cube if the damping region contains a strip that is parallel to x1-x2-plane.

Theorem 5.2. Assume that Ω is the cube (0, π)3 and that

Ωa,b := (0, π)2 × (a, b) ⊆ Ω+

for some 0 ≤ a < b ≤ π with b−a < π. Assume further that the assumptions (A0)
to (A3) of the previous section are satisfied. Then A⊥ satisfies (5.1) and (5.2)
with l = 2, and consequently we have

∥etAU0∥H ≲ t−
1
2 ∥U0∥D(A), ∀U0 ∈ D(A⊥), t ≥ 1.

Proof. Property (5.1) has been been checked in Corollary 4.5. So it remains to
show (5.2) with l = 2. For that purpose, suppose that (5.2) with l = 2 is wrong.
Hence, there exists a sequence {(λn, Un = (En, Hn))}n≥1 in R×D (A⊥) with βn > 0
satisfying

βn → +∞ as n→ ∞, ∥Un∥H = 1, ∀n ≥ 1, (5.8)

and
β2
n( iβnUn −AUn) = (Fn, Gn) → 0 in H. (5.9)

In particular there is an index N ∈ N∗ such that

βn ≥ 1, ∀n ≥ N. (5.10)

First, the dissipativity property (2.5) yields

β2
n

∫
Ω

σ|En|2 → 0 as n→ ∞. (5.11)

Detailing (5.9), we obtain

β2
n(iβnEn − curlHn + σEn) = Fn → 0 in L2(Ω)3,

β2
n(iβnHn + curlEn) = Gn → 0 in L2(Ω)3.

(5.12)

Next, since (En, Hn) may not belong to D(A0), for a correction we will use the
unique solution φn ∈ H1

0 (Ω) of∫
Ω

∇φn · ∇χ̄ =

∫
Ω

En · ∇χ̄, ∀χ ∈ H1
0 (Ω). (5.13)

For an arbitrary χ ∈ H1
0 (Ω), the first identity in (5.12) leads to∫

Ω

(iβnEn − curlHn + σEn) · ∇χ̄ = β−2
n

∫
Ω

Fn · ∇χ̄.

Since Green’s formula yields ∫
Ω

curlHn · ∇χ̄ = 0,
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we can express the right-hand side of (5.13) by∫
Ω

En · ∇χ̄ = −i
∫
Ω

(β−3
n Fn − β−1

n σEn) · ∇χ̄

so that (5.13) is rewritten as∫
Ω

∇φn · ∇χ̄ = −i
∫
Ω

(β−3
n Fn − β−1

n σEn) · ∇χ̄, ∀χ ∈ H1
0 (Ω).

Taking χ = φn and using the Cauchy–Schwarz inequality, we deduce

∥∇φn∥Ω ≤ β−3
n ∥Fn∥Ω + β−1

n ∥σEn∥Ω.

Poincaré’s inequality, (5.11) and (5.12) then imply

∥φn∥1,Ω ≲ ∥∇φn∥Ω ≲ β−2
n o(1). (5.14)

We now set Ên = En −∇φn. Observe that the pair Ûn := (Ên, Hn)
⊤ belongs to

D(A0). Since

βn(iβnÛn −A0Ûn) = βn(iβnUn −AUn) + (σβnEn − iβ2
n∇φn, 0)

⊤,

the limits (5.9), (5.11) and (5.14) show

βn(iβnÛn −A0Ûn) → 0 in H. (5.15)

Moroever, from (5.11), (5.14) and (A3) we infer

∥βnÊn∥Ω+
→ 0 as n→ ∞, (5.16)

while (5.8) and (5.14) lead to

lim
n→∞

∥Ûn∥H = 1.

Therefore, there exists N0 ∈ N∗ such that

∥Ûn∥2H ≥ 3/4, ∀n ≥ N0. (5.17)

Next we write Ûn in the basis {Φℓ,j}, i.e.,

Ûn =
∑
ℓ∈Z∗

Nℓ∑
j=1

α
(n)
ℓ,j Φℓ,j

with the coefficients α
(n)
ℓ,j = (Ûn,Φℓ,j)H, so that its norm is given by

∥Ûn∥2H =
∑
ℓ∈Z∗

Nℓ∑
j=1

|α(n)
ℓ,j |

2.

Then (5.15) means that

lim
n→∞

βn
∑
ℓ∈Z∗

Nℓ∑
j=1

(βn − λℓ)α
(n)
ℓ,j Φℓ,j → 0 in H0,

or equivalently

β2
n

∑
ℓ∈Z∗

Nℓ∑
j=1

|(βn − λℓ)α
(n)
ℓ,j |

2 → 0 as n→ ∞.

Hence, for any ϵ > 0 there exists Mϵ ∈ N∗ such that

β2
n

∑
ℓ∈Z∗

Nℓ∑
j=1

|(βn − λℓ)α
(n)
ℓ,j |

2 ≤ ϵ, ∀n ≥Mϵ. (5.18)
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Before going on with the proof, we notice that Lemma 3.1 of [20] can be transfered
to our setting. Recall that the indices N , N0 and Mϵ have been fixed in (5.10),
(5.17), and (5.18).

Lemma 5.3. For every ϵ ∈ (0, 1
288 ) and n ∈ N∗ with n ≥ max{N0, N,Mϵ}, there

exists an index k(ϵ, n) ∈ N∗ such that

β2
n|βn − λk(ϵ,n)|2 ≤ 2ϵ, (5.19)

β2
n|βn − λk|2 ≥ 1

144
, ∀ k ̸= k(ϵ, n). (5.20)

Proof of Lemma 5.3. The proof follows the arguments of Lemma 3.1 of [20], but
differs a bit from it; therefore we give the details.

We fix ϵ ∈ (0, 1
288 ), and take n ∈ N∗ with n ≥ max{N0, N,Mϵ}. If (5.19) did not

hold, we would obtain β2
n|βn−λk|2 > 2ϵ for all k ∈ N∗. This inequality contradicts

(5.18) because of (5.10) and (5.17). Observe that λk(ϵ,n) has to be positive, because
negative λk(ϵ,n) fulfill

|βn − λk(ϵ,n)| ≥ βn,

and then (5.10) leads to the contradiction

β2
n|βn − λk(ϵ,n)|2 ≥ β3

n ≥ 1.

To show (5.20), we first note that (5.19) and the triangle inequality imply

βn|βn − λk| ≥ βn|λk − λk(ϵ,n)| −
√
2ϵ (5.21)

for k ∈ Z∗. The inequality |λk − λk(ϵ,n)| ≥ 1 leads to

βn|λk − λk(ϵ,n)| ≥ 1

and thus (5.20). This case covers all indices k < 0 as λk(ϵ,n) ≥ 1.
So it suffices to treat k ∈ N∗ with k ̸= k(ϵ, n) and |λk − λk(ϵ,n)| < 1. Notice that

|λ2k − λ2k(ϵ,n)| ≥ 1 (5.22)

since λ2ℓ is always a positive integer. Using this fact, λk(ϵ,n) ≥ 1 and (5.19), we
compute

βn|λk − λk(ϵ,n)| =
βn|λ2k − λ2k(ϵ,n)|
λk + λk(ϵ,n)

≥ βn
3λk(ϵ,n)

≥ β2
n

3(β2
n +

√
2ϵ)

.

The property (5.10) and the assumption on ϵ give

β2
n

3(β2
n +

√
2ϵ)

≥ 1

6
.

Combined with (5.21), we conclude (5.20) via

βn|βn − λk| ≥
1

6
−
√
2ϵ ≥ 1

12
. □

We continue with the proof of Theorem 5.2, where we use ϵ, n and λk(ϵ,n) from
Lemma 5.3. Inserting (5.20) into (5.18), we obtain

1

144

∑
ℓ∈Z∗,ℓ̸=k(ϵ,n)

Nℓ∑
j=1

|α(n)
ℓ,j |

2 + β2
n|βn − λk(ϵ,n)|2

Nk(ϵ,n)∑
j=1

|α(n)
k(ϵ,n),j |

2 ≤ ϵ. (5.23)

For the function

Ψn,ϵ :=

Nk(ϵ,n)∑
j=1

α
(n)
k(ϵ,n),jΦk(ϵ,n),j

estimate (5.23) yields

∥Ûn −Ψn,ϵ∥2H ≤ 144ϵ. (5.24)
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This fact and (5.17) lead to

∥Ψn,ϵ∥2H =

Nk(ϵ,n)∑
j=1

|α(n)
k(ϵ,n),j |

2 ≥ 3

4
− 144ϵ ≥ 1

4
. (5.25)

Recall that Ωa,b = (0, π)2 × (a, b) ⊆ Ω+. From (5.24) we infer the bound

∥Ên − (Ψn,ϵ)1∥2Ω ≤ 144ϵ, (5.26)

where (Ψn,ϵ)1 means the first component of Ψn,ϵ. In view of the form of Φk(ϵ,n),j ,
this component is given by

(Ψn,ϵ)1 =
∑

k∈KTE :|k|2=λ2
k(ϵ,n)

αn,TE,+
k√

2(k21 + k22)
ETE

k

+
∑

k∈KTM :|k|2=λ2
k(ϵ,n)

αn,TM,+
k√

2(k21 + k22 + k23)(k
2
1 + k22)

ETM
k ,

where αn,TE,+
k = (Ûn, Ψ̂

TE,+)H and αn,TM,+
k = (Ûn, Ψ̂

TM,+)H. We minorate the
L2-norm of (Ψn,ϵ)1. First, using the orthogonality of Eτ

k and Eτ
k′ for τ ∈ {TE, TM}

it can be expressed as

∥(Ψn,ϵ)1∥2Ω ≥
∑

k∈KTE :|k|2=λ2
k(ϵ,n)

|αn,TE,+
k |2

2(k21 + k22)
∥ETE

k ∥2Ωa,b
(5.27)

+
∑

k∈KTM :|k|2=λ2
k(ϵ,n)

|αn,TM,+
k |2

2(k21 + k22 + k23)(k
2
1 + k22)

∥ETM
k ∥2Ωa,b

.

By formulas (5.3) and (5.5) the first norm on the right is given by

∥ETE
k ∥2Ωa,b

=

∫ b

a

|wDir
k3

(x3)|2
∫
(0,π)2

| curl⊥ vNeu
k1,k2

(x1, x2)|2 = (k21+k
2
2)

∫ b

a

|wDir
k3

(x3)|2.

Since b− a > 0, we can find a constant δ > 0 depending on a and b such that∫ b

a

|wDir
k3

(x3)|2 =
2

π

∫ b

a

sin2(k3x3) ≥ δ, ∀ k3 ∈ N∗. (5.28)

These properties imply that

∥ETE
k ∥2Ωa,b

≥ δ(k21 + k22). (5.29)

In a similar manner, from (5.4) and (5.6) we infer

∥ETM
k ∥2Ωa,b

=

∫ b

a

|∂3wNeu
k3

(x3)|2
∫
(0,π)2

|∇⊥v
Dir
k1,k2

(x1, x2)|2 + (k21 + k22)
2

= k23(k
2
1 + k22)

2

π

∫ b

a

sin2(k3x3) + (k21 + k22)
2

Combined with (5.28), it follows

∥ETM
k ∥2Ωa,b

≥ k23δ(k
2
1 + k22) + (k21 + k22)

2 ≥ min{1, δ}(k21 + k22)(k
2
1 + k22 + k23).

Inserting this estimate and (5.29) in (5.27) and applying (5.25), we conclude

∥(Ψn,ϵ)1∥2Ωa,b
≥ min{1, δ}

2

[ ∑
k∈KTE :|k|2=λ2

k(ϵ,n)

|αn,TE,+
k |2 +

∑
k∈KTM :|k|2=λ2

k(ϵ,n)

|αn,TM,+
k |2

]

=
min{1, δ}

2
∥Ψn,ϵ∥2H ≥ min{1, δ}

8
.
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This inequality contradicts (5.16) and (5.26) by fixing small ϵ > 0 and large n. □

We add immediate consequences of the above theorem.

Corollary 5.4. Under the assumptions of Theorem 5.2, let P be the orthogonal
projection in H onto ker(A) = R(A)⊥ = H⊥

⊥. Then we have

∥etAU0 − PU0∥H ≤ C t−
1
2 ∥U0∥D(A), ∀U0 ∈ D(A), t ≥ 1.

Proof. Let U0 ∈ D(A). We then obtain (I− P)AU0 = AU0 and APU0 = 0, so that
A and P commute. Since etAPU0 = PU0 for t ≥ 0 and U0 − PU0 ∈ D(A⊥), we can
apply Theorem 5.2 to etAU0 − PU0 = etA(U0 − PU0). □

Example 5.5. Among the manifold examples of Ω+ satisfying the assumptions of
Theorem 5.2, we only mention two.

1) Let Ω+ = (0, π)2×
⋃I

i=1(ai, ai+1) with I ∈ N∗ and a1 ≥ 0, aI+1 ≤ π, ai < ai+1,
for all i = 1, · · · , I with a2 − a1 < π if I = 1. In that case we have kerA = {0}
since the components Ω0,j have connected boundaries, cf. Corollary 4.1.

2) Let Ω+ = B ∪ ((0, π)2 × (a, b)) with 0 ≤ a < b ≤ π, b − a < π, and a ball
B ⊆ (0, π)3 being disjoint with (0, π)2 × (a, b). In that case, Ω0 is made of two
connected components Ω0,1 and Ω0,2, the first one with a connected boudary, while
the boundary of the second one has two connected components. Therefore kerA is
one-dimensional.

Remark 5.6. In view of the discussion at end of Section 4 of [9], Theorem 5.2
remains valid for a parallelipiped Ω = (0, ℓ1π)× (0, ℓ2π)× (0, ℓ3π) with

(0, ℓ1π)× (0, ℓ2π)× (a, b) ⊂ Ω+,

with 0 ≤ a < b ≤ ℓ3π with b− a < ℓ3π as soon as the ratio
ℓ2j
ℓ2k

is a rational number,

for any j, k ∈ {1, 2, 3}. Indeed in that case the spectrum of A0 is equal to {iλℓ}ℓ∈Z∗ ,
where

λℓ = ±

√
k21
ℓ21

+
k22
ℓ22

+
k23
ℓ23
,

for some k1, k2, k3 ∈ N with k1 + k2 + k3 > 0. Therefore the gap condition

|λ2ℓ − λ2ℓ′ | ≥
p

m1m2m3

holds for all λℓ ̸= λℓ′ , writing ℓ
2
j =

mj

p α for some α > 0 and p,mj ∈ N∗, j = 1, 2, 3.

(Compare inequality (5.22) above.)
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