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MAXWELL EQUATIONS WITH LOCALIZED INTERNAL
DAMPING: STRONG AND POLYNOMIAL STABILITY

SERGE NICAISE AND ROLAND SCHNAUBELT

ABSTRACT. We study the Maxwell system with localized conductivity o and
the boundary conditions of a perfect conductor on a simply connected do-
main €2, assuming that there are no electric charges off the support of o. For
matrix-valued permittivity e and permeability u we show strong stability of the
underlying semigroup by checking the spectral criteria of the Arendt—Batty—
Lyubich-Vi Theorem. If e = p =1, Q is the cube (0, 7r)3 and supp o contains
a strip, the semigroup is polynomially stable of rate % To derive this result,
we establish the resolvent estimate of the Borichev—Tomilov Theorem using an
orthonormal basis of eigenfunctions of the Maxwell operator for o = 0.

1. INTRODUCTION AND MAIN RESULTS

The Maxwell system expresses the fundamental laws of electromagnetism. Here
the conductivity ¢ plays an important role in many materials such as metals since
it induces the current —o F in the system that acts as a damping. Like for the wave
equation it is an intriguing question how the strength of the damping is related
to the support of 0. However, this problem is far less studied for the Maxwell
equations. If the conductive is strictly positive on ‘large parts’ of the domain one
typically obtains exponential decay and related observability estimates. See e.g.
[13], [23], [24], or [26] in the linear case and [19] for nonlinear material laws. Among
the results on boundary conductivity, we also mention [12], [14], [16], [17], [18], [25].
So far, only for constant coefficients € = 1 = 1 exponential decay was established
under the ‘geometric control condition’ using techniques from microlocal analysis,
see [26]. There are almost no results on strong or polynomial stability in cases
where the geometric control condition fails. In this work we show strong stability
for a fairly general class of linear autonomous systems, and polynomial stability
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with rate 3 if suppo contains a strip of the cube (0,7)% and e = p = 1. Our

approach is based on spectral and resolvent criteria.
Let Q be a bounded and open subset of R? with a Lipschitz boundary I' and
outer unit normal v. On €, we consider the Maxwell system
et E(t) = curl H(t) — o E(t), poH(t)=—curl E(t), in (0,00)x Q. (1.1)

Here the permittivity e, the permeability p and the conductivity o belong to
L (0, R3%3) and satisfy

Sym

e,p>nl, 0>0 (1.2)
for some 1 > 0. We complement (1.1) with the electric boundary condition
Et)xv=0 in (0,00)x7T (1.3)
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2 SERGE NICAISE AND ROLAND SCHNAUBELT

and with the initial conditions E(0) = Ey and H(0) = Hj.
Further, €0y denotes the open subset of (2 consisting of points x € 2 such that
o = 0 a.e. in a neighbourhood of z, and we set

Recall that the essential support of ¢ is defined by supp.. (o) = Q\ Qo = O, with
relative closure in 2.

The kernel of curl contains the gradient fields, which are a severe obstacle for
regularity and compactness properties, and they lead to fixed vectors preventing
decay of solutions to (1.1). To get rid of them, one needs divergence conditions
for the data and restrictions on the topology of €2, cf. Theorem 2.10" in [7]. These
difficulties constitute a major difference between the scalar wave equation and the
Maxwell system, besides the complexity of system and its boundary conditions.
Throughout we require that the electric charge density div(e Fy) vanish on Qg, there
is no ‘magnetic charge density’ div(uHy) on €2, and the normal trace v - uHy is zero
on I'. As noted in the next section, these conditions are preserved by the solutions
of (1.1). However, the internal conductivity will produce a non-zero charge density
div(eEp) on Q. , which is a serious difficulty in our analysis. (This does not happen
in the case of boundary damping, which is easier in this respect.)

In this setting the Maxwell system is solved by a contraction semigroup e**

with generator A, see Lemma 2.1. After Section 2, when dealing with the long-
term behavior, we have to impose stronger assumptions on the domain and the
coefficients. We need that 2 simply connected, that 2, and €y are non-empty
and have a Lipschitz boundary, and that 9Qy N T is a Lipschitz submanifold of T'.
Moreover, € and g have to be Lipschitz and o is scalar. Under these conditions, in
Section 3 we show that iR \ {0} belongs to the resolvent set of A. Here injectivity
follows from a backward uniqueness result for the time-harmonic Maxwell system.
Surjectivity is proven by means of Lax—Milgram and a Fredholm argument which
exploits a compact embedding for the H-fields in our state space. We stress that we
cannot expect a compact resolvent of A since there could be electric charges on Q.
We further describe the kernel of A and show that it is the orthogonal complement
of its range. Because of the Arendt—Batty—Lyubich—Vu theorem, in Theorem 3.6
we then obtain the strong stability of the restriction of et* to (ker A)L. A variant
of this fact under partly different hypotheses was shown by Eller in [13] without
invoking spectral theory, see also [28] for the case of boundary damping.

With some effort we can then show the closedness of the range of A in Proposi-
tion 4.4 assuming also that I" is connected, o is strictly positive on G, and certain
geometric constraints on Gy, see (A0)—(A3). This fact is based on a Poincaré-type
inequality for the curl in Lemma 4.2 which exploits the charge-freeness on €y to
counteract the electric charges on 2. In our main result Theorem 5.2 we fur-
ther specialize to the cube Q = (0,7)3 (see Remark 5.6 for a variant), coefficients
e = pu = 1, and damping regions Q that contain a strip (0,7)? x (a,b). We can
then show that the kernel of A is polynomially stable with rate %; ie.,

et Ty = PUpllac < C+72|[Uollpeay, ¥Uo € D(A), t> 1. (1.4)

for the orthogonal projection P onto ker(A) = R(A)+. We are aware of only one
related result. In [27] Phung treated general cylinders D X (—p, p) with a damping
region around the lateral boundary 0D x (—p, p). However, in this result there is no

information about the rate; whereas the proofs seem to give much smaller values
than our % The method in [27] is completely different than ours using Fourier

integral operators and observation-type estimates.
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To show (1.4), we check the resolvent condition of the Borichev—Tomilov the-
orem via a contradiction argument. By this approach, for the 2D wave equation
an analogous result was already shown in [20]. There one could use trigonometric
polynomials as an orthonormal base, which here have to be replaced by the TE-
and TM-modes for the Maxwell system with ¢ = 0, see [9]. Our argument in-
volves correction terms to make our solutions completely divergence-free and the
calculations take advantage of the (complicated) structure of the eigenfunctions.

We finish this introduction with some notation used in the remainder of the
paper. Let us first recall important Hilbert spaces based on the div and curl op-
erators, where 0 € LOO(Q,R?;;)’). The traces below are defined in H~'/%(T'), see
Theorems 2.2.18 and 2.2.24 in [3].

H(curl, Q) = {E € L*(Q)? : curl E € L*(Q)?},
Hy(curl, Q) ={F € H(cur,Q) : Exv =0 onT},

)=
H(dive, Q) = {F € L*(Q)? : div(6F) € L*(Q)},
Hy(divg, Q) = {F € H(divg,Q): (0F)-v =0 on T},

H(divg = 0,Q) = {F € L*(Q)? : div(6F) = 0},
Hy(divg = 0,Q) = Ho(divg, Q) N H(divg = 0,Q),

Xno(Q) = Ho(curl, Q) N H(divg, ),

X71,0(2) = H(curl, Q) N Hy(divg, ),

Kno(Q) ={ue Xnp(Q):curlu =0 and div(fu) = 0},

Krg() ={u € Xrp(Q) : curlu = 0 and div(fu) = 0}.

All are endowed with the natural Hilbertian norm. We omit the subscript 6 if 6 = 1.

Let s ¢ R, D C ' or D C 9, where ' C R3 has a Lipschitz boundary. The
usual norm and semi-norm of H*(D) are denoted by ||-||s,p and |- |5 p, respectively.
For s = 0 we drop the index s. By A < B, we mean that there exists a constant
C > 0 independent of A, B, and the time variable ¢ such that A < CB.

2. WELL-POSEDNESS OF THE PROBLEM

We first discuss the Gauy’ laws for E and H. Let (E,H)" in C ([0, 00), L*(Q2)) N
C'([0,00), H~1(2)) solve (1.1). Applying the (distributional) divergence to the
first equation of (1.1) in Qp, we obtain

8t le(EE(t)) =0 in QQ, Vit>D0.
Consequently, if the initial electric field satisfies
div(eEo) =0 in Qo, (2.1)
then it follows
div(eE(t)) =01in Qo, Vit >0.
Similarly, the second equation yields
O div(pH(t)) =0 inQ, Vi¢>0.
Hence, the assumption
div(uHp) =0 in Q, (2.2)
leads to
div(uH(t)) =0 inQ, Vi¢>0.
Assume also E € C([0,00), Hy(curl,2)). Then Corollary 3.1.6 of [3] yields v -
curl E =0 on I'. So we deduce as above that

v-H=0 onI, V>0, if v-Hy=0 onT. (2.3)
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We often use these properties, e.g., in the context of Helmholtz decompositions.
These arguments justify to introduce the state space
H = H,(div, = 0,Q) x Hy(div, = 0,9Q),

which is a Hilbert space with the inner product

(B,H)",(E'\H)"), = /ﬂ (eE-E' +uH-H), V(BE,HT,(E,H) €K,

of L2(€2)* x L2(2)?, where for shortness we have set
H,(div. = 0,Q) = {E € L*(Q)? : div(eE) =0 in Qo}, (2.4)
To treat (1.1) on the space H, we define the closed operator A by
D(A) = H N (Hp(curl, Q) x H(curl, )),
AE,H)" = (e (cwlH — oE), —p~! curlE)T.

This operator generates a Cp-semigroup e** of contractions in H because it is
maximally dissipative, as shown in the next lemma.

Lemma 2.1. Let Q C R? be a bounded Lipschitz domain and e, p, o0 € L>=(S, R‘:’yxn%)
satisfy (1.2). Then A is mazimally dissipative in H.

Proof. The proof is quite standard except for the maximality, where we have to
take into account the divergence constraint in 2. First, Green’s formula yields the
core dissipation identity

(A(E,H)",(E,H)"),, = —/ o|E|?, V(E,H)" € D(A), (2.5)
Q

so that A is dissipative.
To show maximality of A, fix A > 0 and (F,G)" € 3. We are looking for
(E,H)T € D(A) satisfying

MNE,H —AEH)" =(FG)". (2.6)
or equivalently
AeE —curl H+ oFE = ¢€F, AMH + curl E = pG.
We derive a second-order version. The second equation leads to
H=)\'G- ) 'y curl E. (2.7)
Inserting this expression into the first equation above, we get
XeE+ A tewl (! ewl E) + 0E =eF + A curl G. (2.8)
To solve this problem, we thus look for a function E € Hy(curl, §2) satisfying
ax(E,E") = /Q(sF “E' 4+ X7'G - curl E'), VE' € Hy(curl, ), (2.9)

ax(E,E') := / (Ae+0)E-E + X ' curl E - curl EY).
Q

The sesquilinear form ay is continuous, symmetric and coercive in Hy(curl, Q) as
n(B.E)> [ Ol + () ! curl BP).

Therefore (2.9) has a unique solution E € Hy(curl, Q). Testing by E’ € D(Q)3, we
find that FE satisfies (2.8) in the distributional sense.
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To check the divergence constraint for F, into (2.9) we insert the gradient of the
O-extension 1 of a test function 1 € D(Q) obtaining

/ (AeE +0E —¢F) - Vi) = 0.
Q
Since o and v have disjoint supports, it follows
/ (AMeE —¢eF)-V¢ =0, Ve D),
Qo

which means
Adiv(eE) = div(eF) =0 in Qg
distributionally, where F' € H,(div. = 0,2) is used.

Now we can define H by (2.7), so that the second component of (2.6) is true.
This map then belongs to Hy(div, = 0,Q) because of G € Hy(div, = 0,Q) and
E € Hy(curl,Q), see Corollary 3.1.16 in [3] for the normal trace. Finally, (2.8)
becomes

AeFE —curl H 4+ oFE = ¢F,

which shows that (E, H)" is contained in D(A) and solves (2.6). O

3. STRONG STABILITY

One simple way to prove the strong stability of (1.1) is provided by the following
theorem due to Arendt-Batty and Lyubich-Vu (see [2, 21]).

Theorem 3.1. Let X be a reflexive Banach space and (T'(t))i>0 be a Co-semigroup
generated by A on X. Assume that (T(t))i>0 is bounded and that no eigenvalues
of A lie on the imaginary axis. If 0(A) NiR is countable, then (T'(t))i>0 is strongly
stable in the sense that

lim T(t)xr =0, VzeX.

t—o00

Since the resolvent A is not necessarily compact, we have to analyze the full spec-
trum on the imaginary axis. This is done in the next lemmas, using the following
assumption.

(H) Let Q C R? be open, bounded and simply connected, Q4,0 # 0, I' = 99,
094 and 99 be Lipschitz, and 9QyNT" be a Lipschitz submanifold of I'. Moreover,
let e, u € WHo°(Q,R3%3) and o € L*°(G, R) satisfy (1.2).

sym
By vy we denote the outer unit normal of 0.

Lemma 3.2. Let (H) hold. Then iwl — A is injective for each w € R\ {0}.
Proof. Fix w € R\ {0}, and let (E, H)" € ker(iwl — A). This pair then satisfies
iweE —curlH +0FE =0, (3.1)

iwpH + curl E = 0. (3.2)

First, the dissipation property (2.5) yields
0=R((iwl —A)E,H)",(E,H)"), = —/ o|E|?
Q

and therefore

ocE =0 in Q, (3.3)
implying also that

E=0 inQ,. (3.4)
Coming back to (3.1), we find

iwel —curl H =0,
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and therefore e E is divergence-free. By (3.4) and (3.2) the fields (E, H) " vanish on
a ball in Q. (Recall that Q. is open and non-empty.) Hence, they are zero on 2 by
the backward uniqueness result Corollary 1.2 in [22]. (See the text following this
result and also Corollary 1.2 in [15].) Here we need that € and p are Lipschitz. O

We next determine the kernel of A which could be non-zero because of initial
charges located in .

Lemma 3.3. Let (H) hold. We then have
ker A = Ky .(Q) x {0}
with the space
Kne(0) :={E: E € Ky ()},
where E is the extension of E by zero outside .

Proof. Let (E,H)" € kerA. As in the previous proof E then satisfies (3.3) and
(3.4), which yields
curl H =0 = curl E. (3.5)

Hence, H belongs to Kr,() and is thus zero by Dominguez’ theorem as €2 is
simply connected, see Theorem 6.2.5 in [3] or Proposition 3.14 in [1] if p =
Furthermore, since £ = 0 on Q; and E € Ho(curl,Q), Propositions 2.2.32 and
2.1.60 of [3] show that E x vy = 0 on 8Qp. (The extra regularity of 9 is used
here.) So (E, H)T € 3 and (3.5) imply that E is contained in Ky ().

For the converse inclusion, take (E, H)T € Ky .(Q0) x {0}. Then E belongs to
Ho(curl, Q) and curl E = 0 by Proposition 2.2.32 of [3]. As a result, (E, H)"
contained in the kernel of A. ]

For the proof of the surjectivity of iwl — A, we cannot use the same arguments as
in Lemma 2.1 because a;,, is either not coercive in Hy(curl, 2) anymore if w # 0, or
not defined if w = 0. Instead, the case w # 0 is treated via a compact perturbation
combined with the injectivity property of Lemma 3.2. The case w = 0 is more
delicate and will be considered in the next section under additional assumptions.

Lemma 3.4. Let (H) hold. Then iwl — A is surjective for each w € R\ {0}.
Proof. Fix w € R\ {0} and (F,G)T € 3. We are looking for (E, H)" € D(A) with
iw(E,H)" —A(E,H)" = (F,G)". (3.6)
or equivalently
iweE — curl H + oF = ¢F, (3.7
iwpH + curl E = uG.
The first equation can be rewritten as
E = (ol 4 iwe) " (curl H 4 €F). (3.9)
Inserting this expression in the second equation, we infer
iwpH + curl (o1 + iwe) ™ (cwrl H + eF)) = pG.
We thus look for a function H € Xp () solving

bi,(H,H") / pG - H' — ((ol + iwe)'eF) - cwrl H'), VH' € Xr,(Q), (3.10)
Q

bi,(H, H") (iwpH - H' + (o] + iwe) ™" curl H - cwrl H' + div(uH) div(pH')).

D\
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This sesquilinear form is not coercive on Xz ,(£2), but we use a perturbation
argument. Namely, we introduce the form

ciw(H,H") = / (H-H'+ (ol +iwe)~ ' cwl H - curl H' + div(pH) div(pH")),
Q
on Xr,(92) and show that e¢;,, is coercive for some 0 € (—g, %) Indeed, we have

&E(ewcw(H, H)) = / {w sin0(5(02]1 + w252)*1 curl H) ccurl H
Q
+ cos O (|H|*+ |div(pH) >+ (0(o°T + w’e®) " 'curl H) - curl H)}

since ol and € commute. Therefore if w > 0, we choose 0 € (0, §) so that cos@ > 0
and siné > 0 so that

R(e (1) > C [ (HP +|div(u) + | curl HP),
Q

with a positive constant C that depends on w,f and ¢. On the contrary, if w < 0,
we chose 6 € (—7,0) so that cosf > 0 and sinf < 0 and find the same estimate
with another positive constant C. We next define the continuous operators

Biw: X1,u(Q) = X7,(Q), H— BiwH;  Ciw: Xr,u(Q) = Xr,,(Q), H > CiH,
by setting
(BiwH,H") = biy(H,H'), (Ci(wH,H')=ci,(H,H"), VH,H € Xr,Q).
Thanks to the Lax-Milgram lemma, the coercivity of e??c;,, implies that the oper-
ator C;,, is an isomorphism. Observe that
Biw — Ci, = twp — 1,
and that Xr ,(Q) is compactly embedded into L?(2)? due to Theorem 7.5.3 in [3].

Hence, B,,, is a Fredholm operator of index zero.
To show ker B;,, = {0}, we take H € ker B;,,. Then it fulfills

/ (iwpH - H' + (ol + iwe) ™" curl H - curl H' + div(pH) div(pH')) =0 (3.11)

Q

for all H € X7 ,,(2). Let us first prove that pH is divergence free (cf. [8, Theorem

1.2] or [10, Theorem 1.1]). We introduce the divergence-form operator Af. by
Al = div(uVe), DA, = (¢ € BUQ)IAM € L2(Q)}

with Dirichlet boundary condition. For ¢ € D(A%,, ), in (3.11) we take H' = Vg
and obtain

/ (iwpH - V@ + div(pH) div(uV)) = 0. (3.12)
Q
Green’s formula then yields

5 div(pH ) (iwg — div(uVe)) = 0.

Since the range of the operator iwl — AL, is the whole L?(§), we deduce that H
belongs to Hy(div, = 0,Q).
Coming back to (3.11), we set

E = (o] +iwe) P curl H € L*(Q)°.
Then (3.1) is true and (3.11) leads to

/ (iwpH -H' + E-curlH') =0, VH' € X1,(). (3.13)
Q

Inserting H' € D(Q)* C Xr,(Q), we find that also (3.2) holds and thus E €
H(curl, ©2).
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To show E x v =0 on I, we extend (3.13) to test functions in H'(Q)?, namely
/ (iwpH - @+ E-curl®) =0, V& e H'Y(Q) . (3.14)
Q

Indeed, for a given ® € H'(Q)® we can consider its Helmholtz decomposition
&=Vt H
with ¢ € H'(Q), H' € X7,,() and div(uH') = 0, see (6.37) in [3]. Consequently,

/(iwuH-<f>+E~cur1(f>) :iw/uH-Vzﬁ—i—/ (iwpH - H' 4+ E - curl H').
Q Q Q

The second term on the right-hand side is zero due to (3.13), while its first term
disappears using Green’s formula and H € Hy(div, = 0,9). This proves (3.14).
In (3.14) we can apply Green’s formula and (3.2) to find

(E x ”7@11—%@) =0, V®ec H (Q)?,

in the H-2-H %—duality. The surjectity of the trace map then yields
Exv=0 onT. (3.15)
Since the definition of E directly implies that
div(eE) =0 in Qo,

we conclude that the fields (E, H) T belong to ker(iwl —.A). Lemma 3.2 then shows
E=H=0,ie., ker B;, = {0}.

Now we can come back to (3.10) and conclude that this problem has a unique
solution H € Xr,,(Q2). We then define E € L?(Q2)? by (3.9) and have to show that
(E,H)T belongs to D(A) and solves (3.6).

First, (3.7) is trivially satisfied by the definition of E. The divergence-free prop-
erty of F directly follows from this identity and div(eF) = 0 on €. Next in (3.10)
we take test functions H' = Vo with ¢ € D(A’,, ). Then H satisfies (3.12) since
G € Hy(div, = 0,9). As before, we infer div(uH) = 0. Finally, equations (3.9)
and (3.10) lead to

/ (iwpH - H' 4+ E - curl H') = / pG-H', VH' € Xr,(Q).

Q Q

As for G = 0 above, we arrive at (3.8) and (3.15). This shows that (E, H)T belongs
to D(A) and solves (3.6). O

The surjectivity of A is a delicate question, so at this stage we first prove that
ker A is orthogonal to the range of A.

Lemma 3.5. Let (H) hold. For the scalar product in 3, we then have
R(A)* = ker A.
Proof. Green’s formula and Lemma 3.3 imply
ker A C R(A)L.
To show the converse inclusion, let (E’, H')" € R(A)*. So (E',H')" € K satisfies

/ ((curlH —oE)-E' —cwrlE-H') =0, V(E,H)" € D(A). (3.16)
Q

In a first step, we take an arbitrary ¥ € D(Q)? and consider the unique solution
(RS H& (Qo) of

/ngo-Vf(:/ eV -Vy, Vyx€ Hy(Q).
Q() Q0
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Let ¢ be the extension of ¢ by zero outside €2y. Then the pair (¥ —V,0) T belongs
to D(A). Note that cV@ = 0 by the supports. Using (¥ — V$,0)" in (3.16), we
thus obtain

/ (o0 B +curl - H') =0.
Q
Since VU is arbitrary in D(Q)3, we find
curl H + oE' = 0. (3.17)

In a similar manner, pick ® € D(Q)? and consider the unique solution ¢ €

H'(Q)/C of

/chp-V)Zz/,qu)-V)Z, Yy e H'(Q). (3.18)
Q Q
Then the pair (0, ®—V¢) T is contained in D(A). Inserting it into (3.16), we deduce
/ curl® - E' =0 (3.19)
Q
which means
curl B/ = 0. (3.20)

Now we repeat this argument with ® € H*(Q)3 and ¢ € H'(Q)/C solving (3.18).
This again yields (3.19). Green’s formula and (3.20) then lead to

(E' x v, ®) 0,

L =
H™3(D)
and therefore

E' xv=0 onT.

This property combined with (3.17) and (3.20) implies that (E’, H') € D(A). Using
Green’s formula, we also infer

0= / ((curlH' + oE') - E' —curlE' - H') = / o|E'2.
Q Q
Since then o E’ = 0, we conclude curl H' = 0 and thus A(E’, H')T = 0. O

This proof indeed shows that D(A*) = D(A) and
AYE H" = (—(cwrl H + oF'),curl E"YT, V(E',H')T € D(A*).  (3.21)

In order to formulate a strong stability result, using Lemma 3.5 we introduce
3, = (ker A)t = R(A) in H and the restriction A, of A to 3| defined by

A (BEH)" =AE,H)", Y(E,H)" e DA,)=DA)NH,.

Clearly, A maps D(A ) into 3, . Since e'! leaves invariant R(A), its restriction
to this space is generated by A;. The above lemmas and Theorem 3.1 yield the
following strong stability result.

Theorem 3.6. Let (H) hold. Then A, has no eigenvalue on iR and
iR\ {0} € p(AL).

Therefore the semigroup generated by A, is strongly stable in H | .
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FIGURE 1. An illustration of our assumptions (A0)—(A2) with
Q4 in red and ¢ in white.

4. THE CLOSED RANGE PROPERTY

Lemma 3.5 shows that 0 € p(A_ ) if and only if R(A) is closed. In this section we
give some (sufficient) additional conditions that guarantee this property, namely
(see Figures 1-4 for some illustrations):

(AO0) Let (H) hold and I' be connected. Assume there exist a finite set K and
disjoint,! connected, open and non-empty sets Q4 with Lipschitz boundaries I'j,

such that
2y = Ukex Dk

(A1) If Q4 ,, NT = 0, then its boundary I'y is assumed to be connected. Denote
by Kint the index set of such subdomains.

(A2) If Q4 NI # 0, then we assume that this set is of positive (relative) measure.
We will set Kpay = K \ King.

(A3) There exists a positive constant o_ such that

o>o0_onQy VkeX. (4.1)

The connected, disjoint and open components of €}y are denoted by € ; for j € g,
the index set J being finite due to our assumptions. For each j € J, the boundary
of Qo ; is not necessarily connected. Following the notations from [1], we then
decompose 9% ; as

I;
0, =J " Ti
where I'; ; are the different connected components of 9€) ; and I'; ¢ is the boundary
of the sole unbounded connected component of R3\ Qg j- Then according to Propo-
sition 6.1.1 in [3], see Proposition 3.18 in [1] for ¢ = 1, the space Ky (£, ;) has
a finite dimension I; := dim Ky (€, ;) equal to the number of connected compo-
nents of €y ; minus 1. For ¢ € J; := {1,---,I;} we introduce the unique solution
@o.j.i € H'(Q,;) of
diV(&‘V(pO,j’i) =0 in QOJ,
®o4i=1 onlTjg (4.2)
$0,5,5 = 0 on Pj,i/, Vi/ 75 1.

Imeaning that O} , N Qv =0 if k # K
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FIGURE 2. The assumption (AO0) is not satisfied: the boundary of
Q is not connected since O C R? \ Q.

FIGURE 3. The assumption (A1) is not satisfied: the boundary of
4 o is not connected.

Then Ky (€0,;) is spanned by the set of functions Vg ;; with ¢ =1,--- , I; since
they belong to K -(€o,;) and are linearly independent. These functions are now
extended into (g ;; to the whole € by

~ 1 in Ujﬂ‘,
#0551 = g
0 onUj,,i #1,

for the connected components U;; of QN (R3\ Qg ;) with i =0,--- , I;, where Uj o
is included into the sole unbounded connected component of R?\ € ;. With these
notations, Lemma 3.3 directly leads to the next result.

Corollary 4.1. Let (A0)—(A2) hold. Then we have
ker A = Ky o(Q0) x {0} = span{(V;,0)" :i=1,---,1;,5 €3}

Inspired by [11, Lemma 2.2], we first prove a Poincaré-type inequality.
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FIGURE 4. The assumption (A2) is not satisfied: meas Q4 1 NT = 0.

Lemma 4.2. Under assumptions (A0)—(A2), it holds
1Ellao < 1], + [l curl Ellq (4.3)

for all E € Hy(div. = 0,Q)N Ho(curl, Q)N (K. (Q0))*, where (K. (Q))* means
here the orthogonal complement of Kn (Q0) in L2(Q)3.

Proof. Fix E € H,(div. = 0,Q) N Hy(curl, ) N (f(N)E(QO))l. Since € is simply
connected, by Theorem 6.1.4 in [3] (or Theorem 3.17 in [1] if € = 1) there exists a
unique w € Xn (Q) N H(div. = 0,Q) such that

curlw = curl £ in §,

and
Wl B (eun,0) S [l curl Eflq. (4.4)

Further, as T is connected, Proposition 3.3.9 of [3] provides a map ¢ € Hg () with
E=w-Vep in . (4.5)

This identity and (4.4) directly imply that
IVellay S 1Ela, + [lcurl Efq. (4.6)

A priori this estimate gives no control on the L?-norm of ¢ in €2, needed below to
apply the trace theorem. But Poincaré’s inequality and assumption (A2) yield

lelles s S IVelay . S IElay + [curl Ellg,  VE € Kpay- (4.7)

Our goal is to prove a similar estimate for k& € Kj,¢. For that purpose, by (4.5)
and the fact that ew and ¢F are divergence free in )y, we have

div(eVep) =0 in Q. (4.8)
Moreover, since E € (Ky .(Q0))*, Corollary 4.1 leads to

/ 5E~Vg007j,i:0, VZ:L 7Ij7j63- (49)
Qo,j

Now for j € J and 7 € J; we note that there exists a unique index

kji € King such that T'j; = 0Q g, .
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We fix j € 4,7 € Jj, and k;; € Ky as above. The divergence-free property of w in

Q4 k;, implies
ew - vy = 0.
/1“. ,

J,

Using also ¢g,; = 1 on I';;, Green’s formula then yields

/ EW - V<p07j7i = — diV(E?U)(poJ,i + / (611} . Vo)(p()’jﬂ' =0. (4.10)
Qo,j Qo,; 0,

Combining the formulas (4.5), (4.9) and (4.10), we deduce that
/ V@'€V¢07j7i:0, Viejj,jeg.
Qo j

Green’s formula then directly leads to

/ oy eVg i =0,
.

Z/ wu EV%”——/ ovy-eVepo i, VieT;.

i'€J; Ty

Since ¢ = 0 on I', the integral on the right reduces to the intersection between I'; o
and some I'y, with k£ € Kpqy, and therefore

Z/ - eVpo i=— Y / ovo eV i, Vi€

i'€J; kEXpay ¥ Fi0NTk

Observe that

S llellore S el i

/ o1y - eVpo,j
ijoﬂl—‘k

by Cauchy—Schwarz and the trace theorem. In view of (4.7) we arrive at

Z/ v -eVeo il SIElla, + | curl Bllg, Vied;. (4.11)

ASHES

Setting O4 ; = |J Q4 k.., we assert that the Poincaré inequality

i€

d,i?

Ielio., < IVello, + 3|30 / o €V0 44 (4.12)

i€J; | €T;

holds. Indeed by a contradiction argument and the compact embedding of H!(0. ;)
into L?(04 ;), it suffices to show that if this right-hand side is zero, then the left-
hand side has to vanish. So let the right-hand side be zero. Then the nullity of the
first term yields

@ = ¢y on QJr,k;jyi,
for some ¢;; € C and all ¢/ € J;. From the vanishing second term we thus obtain
Z / ci Vg - €V(p07],—0 VZEJ
i/ €J;
On € ; we define the function

=" cipoi

i'ed;
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and note that it is equal to ¢; on I';; for ¢ € J; and equal to zero on the remaining
part of 99 ; by the properties of ¢ j ./, see (4.2). Hence the previous identity
means that

/ Yy -eVepo s =0, Viel;.
990,
Since div(eVg ;) = 0, Green’s formula yields

Vi - Evg@o)jﬂ‘ =0, Vie jj.
Qo j

Multiplying this equality by ¢; and summing on i € J;, we get
/ Vi - eV = 0.
Q(],j

This fact implies that ¢ = 0 (because ) =0 on I'; o), and then ¢; = 0 for all ¢ € J;
by the linear independence of {¢q j,; : i’ € J;}. We have shown (4.12).
Inserting (4.11) into (4.12) and using (4.6), we derive

lelo,, S IVello,, +11Ela, + [[cwl Bl S |Ello, +[[curl Ello, Vi €.

Since any €24, with k € Ky is included into one O ;, this estimate implies that

elley . S 1Elay +[curl Ellg,  VE € Kint. (4.13)
Let us again fix j € J. Taking into account (4.8), we deduce that
IVllon, < 19153 00, » S 1000y + 3 10l (419)
i€J;

recalling that 0Qg ; = Ufio T';; and that the sets I';; are disjoint. On one hand,
for ¢ € J;, the component I';; is a part of some I'y, with k& € Kj,;. Then the trace
theorem and (4.13) lead to

Ielb r, ) S 1Bl + lcurl Ella, Vi€, (4.15)

On the other hand, as ¢ = 0 on I', for I'; o we have
||@||H%(F]‘,0) = Z ||g0‘|ﬁ%(Fj,oka)’
k?EiKbdy

cf. Definition 2.1.53 in [3]. Therefore, again by the trace theorem we deduce

||SD||H%(FJ’0) 5 Z HSO| 1,Q+7k1
kej{bdy
so that (4.7) yields
Il e, S Bl + ] curl B, (416)

Estimates (4.14), (4.15), and (4.16) show
Hv<p||90,j 5 ||E||Q+ + H CurlEHgv Vj € Ha

and therefore
IVella, S 1Ellay + || curl Ef|q.
Combined with (4.6) we arrive at

IVello 5 1Bl + | cwl o,
This inequality, (4.4), and the decomposition (4.5) lead to the assertion (4.3). O
From this result we deduce the core property to show the closedness of R(A).
Lemma 4.3. Under assumptions (A0)—(A3), we have
1B, ) llse S IAGE, H) llse, ¥ (B, H)T € D(AL). (4.17)
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Proof. Suppose that (4.17) does not hold. Then there exist fields (E,, H,)" €
D(A,) satisfying
|(En,Hy)  |lsc =1, VYneN, (4.18)
and
|A(En, Hy) T|lc — 0 as n — oo. (4.19)
The dissipation identity (2.5) and (4.18) imply

/Q”\Enl2 < | A(En, Hy) e

Using properties (4.1) and (4.19), we infer

|Enllo, =0 asn — oo.
The limit (4.19) then leads to

[[curl B, ||l + || curl Hy|lo — 0 as n — oo. (4.20)

From these two statements and Lemma 4.2 we conclude

IE:llo =0 asn— oo.
As Q is simply connected and H,, € Hy(div, = 0,), Theorem 6.2.5 of [3] gives

|Hollo S |l cwrl Hy o,

so that (4.20) yields
|Hnllo — 0 asn — oc.

We now arrive at a contradiction with (4.18). O
Proposition 4.4. Under assumptions (A0)—-(A3), the range R(A) is closed.

Proof. As R(A) = R(AL), it suffices to prove the closedness of R(A ). So let
((En, Hy) T )nen in D(A) have the limit

A(E,,H,)" = (F,G)" in %K. (4.21)

Applying estimate (4.17) to (E,, H,)" — (Em, H,,)" with n,m € N, we deduce
that ((E,, H,) " )nen is a Cauchy sequence in H . Let (E, H)T € H, be its limit.
This property and (4.21) imply

curl H, - eF+oF and culFE, — uG
in L2(Q)3 as n — oco. Since
curlB,, > curl ¥  and curlH, — curl H
in D'(Q)? as n — oo, we deduce that
curl E = uG  and cwlH =e¢F +0FE.

Hence, E and H belong to H(curl,Q) and E is the limit of E, in this space,
implying £ € Hy(curl,Q). Consequently, (E, H)T is contained in D(A,) and
satisfies A(E, H)" = (F,G)T. O

Combined with Lemma 3.5 and Corollary 3.6 the above result shows that A
has no spectrum on iR.

Corollary 4.5. Under assumptions (A0)—(A3), A, is invertible and therefore
iR Cp(AL).
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5. A POLYNOMIAL STABILITY RESULT IN A CUBE

Our theorem on polynomial decay is based on the next result shown in Theo-
rem 2.4 of [6]. See also [4, 5, 20] for weaker variants, partly in more general settings.

Lemma 5.1. A bounded Cy semigroup (e**)

e Ul |x < CtT||Uollpe)y, VU € D(L), t>1,

+>0 on a Hilbert space X satisfies

for some constants C,1 > 0 if we have

p(L) 2{iB | B e R} =iR (5.1)
and
limsupil (8 — L)~ < oc. (5.2)
Bl—o00 B

We will combine this criterion with the Fourier series expansion technique devel-
oped in Example 3 of [20] for the scalar wave equation, which has to be adapted
to our Maxwell system. For that reason, in this section we restrict ourselves to the
case of a domain Q that is the cube (0,7)% and to ¢ = 4 = 1. In such a case, the
Maxwell eigenmodes are explicitly known due to [9]. To recall these results, we
introduce the Maxwell operator Ag on Hy := H(div =0,9Q) x Hy(div =0,) by

Ao(E,H)" = (curl H, —curl )", V(E,H)" € D(Ap),
with
D(Ap) = (Xn(Q) N H(div =10,9Q)) x (Xp(Q) N H(div=0,0)).
As a direct consequence of Lemma 2.1, Theorem 3.5 and Section 4 of [9], the
eigenfunctions of Ay are made of two families, namely the TE and TM modes:

1. TE modes. For all k = (k1,ko,k3) € KTF = {(ky,ks) € N? : ky + ko >

0} x N*, we set?
\I!zE’i = (BFP, % (ikIF)"  carl ETE)T,
curl | v,?ﬁlég (21, xg)) .

/ (5.3)

EgE(IL'l,{EQ,.’Eg) = w,?;r(xg) (

Here wp™(x3) = \/2/msin(kszs) are the orthonormal eigenvectors of the Laplace
operator with Dirichlet boundary condition on the interval (0, ),
UkNl(wa (xl, $2) = % cos(klxl) COS(]{JQZ‘Q)

are the orthonormal eigenvectors of the Laplace operator with Neumann boundary
condition on the square (0,7)?, and curl, is the two-dimensional curl of a scalar

field, i.e.,
o 821}
curl | v = (—31U> .

2. TM modes. For all k = (k1, ko, k3) € KTM = (N*)2 x N, we set

KiM = KD 4+ k3 + k2,

\I/fM’i = (E,zM7 :F(Z'HZM)_l curl E,ZWI)T7

V oPE (24,
E{M(:cl,xz,xs)=8sw}§:u<x3>( L (01 2)) (5.4)

2N* means N\ {0} and Z* = Z\ {0}.
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0
TR Rl (o) ( . )

Uky ks (z1,22)

Here wj®*(x3) = \/2/m cos(ksxs) are the orthonormal eigenvectors of the Laplace

operator with Neumann boundary condition on the interval (0, 7),
v,?lisz (x1,29) = % sin(k1z1) sin(kaz2)

are the orthonormal eigenvectors of the Laplace operator with Dirichlet boundary
condition on the square (0,7)?, and V| is the two-dimensional gradient of a scalar

field, i.e.,
o 611}
VJ_U = (3211) .

The family {EFF k € KTP} U {EfM k € KTP} forms an orthogonal basis of
L?(Q2)3. Completeness is shown in Theorem 3.5 of [9] and the orthogonality is easily
checked. With these notations, the spectrum of Ag is given by

o(Ao) = (kT }perers U {£inT ™ feerern .

Forallk € KTF, \Il,fE’i is the eigenvector of A for the eigenvalue +ix! ¥ while for
all k € KM, \I/zM’i is the eigenvector of Ay for the eigenvalue ikl . Finally,
the set

{W£E7+}kEKTE U {W£E7_}keKTE U {\II{M’J’_}keKT]M U {W£M7_}kEKTAl

forms an orthogonal basis of Hj.
We still have to normalize these eigenfunctions. To this aim, we first note that

2 <—k2 COS(k1x1)Sin(k2$2)> ’ (5.5)

Neu _
curl ) vk, (21, 22) = ky sin(kyx1) cos(kaza)

ag,ler(
curl EY (21, 29, 23) = | Osw

—wp (x3) A Lvpy, (71, 2

xg)ﬁlvkl ko (171, o

)
Du‘(x?))azvNeu2 (xl’ .Tg)

)
93/2 —k1ks cos(ksxs) sin(kyx1) cos(kaxs)
—koks cos(ksxs) cos(kyxy) sin(kaxs) ,
(k? 4 k2) sin(ksw3) cos(kyxy) cos(kaxs)

7372

and hence |[ETP |3 = k? + k3 as well as || curl EF || = (k? + k3)(kFF)2. Setting
sj(z) = sin(k;jz,) and cj(x) = cos(k;x;), we further compute
ky cos(kixy) sin(kaza) (5.6)
ko sin(kixy) cos(kaza) ’
o3/2 [ ka(ki + k3)es(2)s1(w)ea(@) + hakfes(2)s1(w)cz (@)
7z | “Rikia(@)a(@)sa(z) = ki(kE + k3)cs(@)er (2)s2(2)
—k1k2k383(1‘>01 (.Z’)CQ(.’L‘) =+ k1k2k383((1})61 (.’1?)02(33)
and obtain |[|[Ef M |13, = (k%4 k3)(kiF)? as well as || curl EI M |12, = (k3 +k3) (k] F)%.
This results in the norms

Vivph, (@1, 22) =

curl EFP(z) =

|9TP |3, =203 + K2), Yk = (ki b, ks) € K75,
IOTME |3 = 2k + KR + K3+ K), Yk = (ku ko, ka) € KT

With the normalized functions

N 1 A 1
\Ing,i L gTE+ \Pz“M,i L gTE+ (5.7)

- b M2 R

2(k7 + k3)
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the set
~TE, & TE,— 2T M, & TM,—
{‘I’k +}keKTE U {\I]k }keKTE U {q}k +}keKTM U {q}k }keKTM

then forms an orthonormal basis of Hy. Clearly some eigenvalues may coincide,
but all have finite multiplicity. We thus rearrange them in increasing order (on the
imaginary axis) writing

o(Ao) = {ile}rez-

with A1 <0 <A, A <Apgr, Apg) <Ay, VLENT
Denoting the multiplicity of i\, by Ny, we let ®,;, j = 1,...,N¢, be the N,
orthornormal eigenvectors associated with i\, If Ay > 0 (resp. Ay < 0), these
eigenvectors are equal to \Ile"" (resp. WgE_) with kIF = X\ and k € KTE | or
equal to \ilgM’Jr (resp. \i!fM’f) with k1M = X\, and k € KTM.

We now state the main result of this paper which provides polynomial stability of

e on the cube if the damping region contains a strip that is parallel to z1-z5-plane.

Theorem 5.2. Assume that € is the cube (0,7)3 and that
Qa,b = (0777)2 X (avb) - Q-l—
for some 0 < a < b <7 withb—a < w. Assume further that the assumptions (A0)

to (A8) of the previous section are satisfied. Then A, satisfies (5.1) and (5.2)
with [ = 2, and consequently we have

1" Upllsc S t2|Uollpeay, VU € D(AL), t>1.

Proof. Property (5.1) has been been checked in Corollary 4.5. So it remains to
show (5.2) with [ = 2. For that purpose, suppose that (5.2) with | = 2 is wrong.
Hence, there exists a sequence {(A,, U, = (Epn, Hy))},>; iInRxD (A1) with 3, > 0
satisfying a

Brn — +00 asn — oo, WUnllgc =1, Vn>1, (5.8)
and
B2(iBnU, — AU,) = (Fn,Gyp) — 0 in 3. (5.9)
In particular there is an index N € N* such that
Bn>1, VYn>N. (5.10)

First, the dissipativity property (2.5) yields
ﬂﬁ/ o|En> =0 asn — occ. (5.11)
Q

Detailing (5.9), we obtain
B2(iBnEy — curl H,, + 0E,) = F,, = 0 in L*(Q)?,

5.12
B2(ifpnHy +curl B,) = G, — 0 in L*(Q)3. (5:12)

Next, since (E,, H,) may not belong to D(A), for a correction we will use the
unique solution ¢, € H}(Q) of

/an~vx = /QEn-v;Q Vx € HY(Q). (5.13)
For an arbitrary x € Hg(Q), the first identity in (5.12) leads to
/(zﬂnEn —curl H, + 0E,) - Vx = @;2/ F,-Vx.
Since Green’s forgrznula yields ’

/ curl H, - Vx = 0,
Q
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/En-V)Z:—i/(B;BFH—BglaEn)-VS(
Q Q

so that (5.13) is rewritten as

/V(pn-VS(:—i/(ﬂ;‘?Fn—BglaEn)-V)@ VXEH&(Q).
) Q

Taking x = ¢, and using the Cauchy—Schwarz inequality, we deduce

IVenlla < 8271 Fulle + B o Enlla.

Poincaré’s inequality, (5.11) and (5.12) then imply

lenllna S IVenlla S B, %0(1).
We now set En = E, — V,. Observe that the pair (7n =

D(Ap). Since
Bu(inUn — AoUn) = Bn(iBuUn — AUn) + (0
the limits (5.9), (5.11) and (5.14) show
Br(iBnUn — AgUyn) — 0 in H.
Moroever, from (5.11), (5.14) and (A3) we infer
||BnE'n|\g2+ —0 asn — oo,
while (5.8) and (5.14) lead to
Tim [[Unllac = 1.
Therefore, there exists Ny € N* such that
|Ull3c > 3/4, Vn > Np.
Next we write U, in the basis {®y;}, e,

Ny
= > D afe,

tez j=1

with the coefficients a( n —

A Ne
1013 =3 > e

0ezZ* j=1

Then (5.15) means that

(5.14)
(E,,H,)T belongs to

En - lﬂiv@nv O)Ta

(5.15)

(5.16)

(5.17)

(Un, b, J)}c, so that its norm is given by

im B, > Z = )y =0 in o,

Lez* j=1

or equivalently

B2ZZ ah)| —0 asn— oco.

LeZ* j=1

Hence, for any € > 0 there exists M, € N* such that

ﬁ222| B =)o) P < e, Vn> M, (5.18)

ez j=1
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Before going on with the proof, we notice that Lemma 3.1 of [20] can be transfered
to our setting. Recall that the indices N, Ny and M, have been fixed in (5.10),
(5.17), and (5.18).

Lemma 5.3. For every e € (0, ﬁ) and n € N* with n > max{Ny, N, M.}, there
exists an index k(e,n) € N* such that

BalBn = Argem|® < 26, (5.19)
1
218 _ A2 >

Proof of Lemma 5.3. The proof follows the arguments of Lemma 3.1 of [20], but
differs a bit from it; therefore we give the details.

We fix € € (0, 355), and take n € N* with n > max{Np, N, M.}. If (5.19) did not
hold, we would obtain 2|3, — A\x|?> > 2¢ for all k € N*. This inequality contradicts
(5.18) because of (5.10) and (5.17). Observe that A, ) has to be positive, because
negative Ay (c ) fulfill

|/Bn - /\k(e,n)| > ﬂm
and then (5.10) leads to the contradiction
BalBo = Auen|* = B = 1.

To show (5.20), we first note that (5.19) and the triangle inequality imply

for k € Z*. The inequality [Ax — Aj(en)| > 1 leads to
Bnp\k - )\k(e,n)| >1

and thus (5.20). This case covers all indices & < 0 as Ag(en) > 1.
So it suffices to treat k € N* with k # k(e,n) and [Ay — Ag(en)| < 1. Notice that

IAF = M| =1 (5.22)
since A\? is always a positive integer. Using this fact, Ai(en) > 1 and (5.19), we
compute
Bnl/\z - /\i(e,n)\ > Bn 52

Nt Mo Bhugem) (33 + V26
The property (5.10) and the assumption on € give

Bl M — Ai(en)| =

e 1
387 + \ﬁ)
Combined with (5.21), we conclude (5.20) via
Bn|ﬁn—>\k|>f_f>7. O

12
We continue with the proof of Theorem 5.2, where we use €, n and Ag(c ) from
Lemma 5.3. Inserting (5.20) into (5.18), we obtain

Ny Ni(e.n)
1 " N
w2 2P BB~ Ml D ol P e (5:23)
LEZ* 0#£K(e,n) j=1 J=1
For the function
Ni(e,n)
— (n)
‘l/n,e — Z ak}(e,n)“jq)k(fqn)yj
j=1

estimate (5.23) yields
1Un — W, |5 < 144e. (5.24)



21

This fact and (5.17) lead to

Ni(e,n)

2 _ (n) 2 3 1
o= D0 o P2 g - 144> o (5.25)
j=1

1,

Recall that Q,;, = (0,7)2 x (a,b) C Q. From (5.24) we infer the bound
[En — (We)1]|3 < 144e, (5.26)

where (¥, )1 means the first component of ¥,, .. In view of the form of ®y( )
this component is given by

J

an TE,+
(Une)r = > \/ﬁ
keKTE:|k|2= Ak(‘ ) +
n, T M,+
o ot el

k(e n)

where o TEt = (U, OTE )5 and oM = (0, $TM+) 4. We minorate the
L2-norm of (¥, .);. First, using the orthogonahty of Ef and EJ, for 7 € {TE,TM}
it can be expressed as

n,TE,+ 2
OB SR S . sl T - 2217 (5.27)
n,e)1]Q = (k2+k2) k Qa,b .
REKTE |K2=X2 1 2
|ak TMJF|2 TM||2
E
P e TR R T

kEKTM:|k|2= )\k(E "

By formulas (5.3) and (5.5) the first norm on the right is given by

b
BV = [ Rl [ oty ol ton o = (40) [ B o
a 0,m)2

Since b — a > 0, we can find a constant § > 0 depending on a and b such that

b
/ W (23 2/ sin?(ksxz) >0, Vks € N* (5.28)

These properties imply that
1 Bl , = (kT + k3). (5.29)

In a similar manner, from (5.4) and (5.6) we infer

b
|ETMZ, | = / Byl () /( VLB e+ (6 4 )

9 b
— B+ kD)2 [ sin(haa) + (4 + 4)?
s a
Combined with (5.28), it follows
IEEM G, , > k36(kT + k3) + (kT + k3)* > min{1, 6}(kF + k3) (kT + k3 + K3).
Inserting this estimate and (5.29) in (5.27) and applying (5.25), we conclude

min{1,J} TE o
”(\I/n,e)l‘l?)a,bzi[ ST TRy S ap ,+|2}

2
REKTE:|R[Z=22 KEKTM:|k|2=)2

min{1,d}
—

k(e.n)
min{1,4}

2 ||\II’I’LE

>
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This inequality contradicts (5.16) and (5.26) by fixing small € > 0 and large n. O
We add immediate consequences of the above theorem.

Corollary 5.4. Under the assumptions of Theorem 5.2, let P be the orthogonal
projection in H onto ker(A) = R(A)* = Ht. Then we have

€4 Uy — PUllsc < Ct™2(|\Us|pay, VUo € D(A), t>1.

Proof. Let Uy € D(A). We then obtain (I — P)AUy = AUy and APUy = 0, so that
A and P commute. Since e*PUy = PU, for t > 0 and Uy — PUy € D(A, ), we can
apply Theorem 5.2 to Uy — PUy = (U — PUp). O

Example 5.5. Among the manifold examples of Q, satisfying the assumptions of
Theorem 5.2, we only mention two.

1) Let Q, = (0, )2 XUZ-Izl(ai,aiH) with I € N*and a; > 0, ar41 <7, a; < @ir1,
forall ¢ =1,---,I with as —a; < mif I = 1. In that case we have ker A = {0}
since the components )y ; have connected boundaries, cf. Corollary 4.1.

2) Let Q4 = BU ((0,7m)% x (a,b)) with 0 < a <b <7 b—a < 7, and a ball
B C (0,7)? being disjoint with (0,7)? x (a,b). In that case, £y is made of two
connected components {1y ; and € 2, the first one with a connected boudary, while
the boundary of the second one has two connected components. Therefore ker A is
one-dimensional.

Remark 5.6. In view of the discussion at end of Section 4 of [9], Theorem 5.2
remains valid for a parallelipiped Q = (0, ¢17) x (0, ¢37) x (0, ¢37) with
(0,£1ﬂ') X (0,627'(') X (a,b) C Q+,

. . .02, .
with 0 < a < b < f37 with b —a < ¢37 as soon as the ratio 7~ isa rational number,

k
for any j,k € {1,2,3}. Indeed in that case the spectrum of Ay is equal to {iA;}sez+,
where

k2 k2 k2
R L S|

for some ki, ks, k3 € N with k1 + ko 4+ k3 > 0. Therefore the gap condition

Mo > —P

R e o

holds for all Ay # Ay, writing E? = %a for some a > 0 and p,m; € N*, j =1,2,3.
(Compare inequality (5.22) above.)
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