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TRAVELLING BREATHER SOLUTIONS IN WAVEGUIDES FOR CUBIC
NONLINEAR MAXWELL EQUATIONS WITH RETARDED MATERIAL

LAWS

SEBASTIAN OHREM AND WOLFGANG REICHEL

Abstract. For Maxwell’s equations with nonlinear polarization we prove the existence of

time-periodic breather solutions travelling along slab or cylindrical waveguides. The solutions

are TE-modes which are localized in space directions orthogonal to the direction of propagation.

We assume a magnetically inactive and electrically nonlinear material law with a linear χ
(1)-

and a cubic χ
(3)-contribution to the polarization. The χ

(1)-contribution may be retarded in

time or instantaneous whereas the χ
(3)-contribution is always assumed to be retarded in time.

We consider two different cubic nonlinearities which provide a variational structure under suit-

able assumptions on the retardation kernels. By choosing a sufficiently small propagation speed

along the waveguide the second order formulation of the Maxwell system becomes essentially

elliptic for the E-field so that solutions can be constructed by the mountain pass theorem. The

compactness issues arising in the variational method are overcome by either the cylindrical ge-

ometry itself or by extra assumptions on the linear and nonlinear parts of the polarization in case

of the slab geometry. Our approach to breather solutions in the presence of time-retardation is

systematic in the sense that we look for general conditions on the Fourier-coefficients in time

of the retardation kernels. Our main existence result is complemented by concrete examples of

coefficient functions and retardation kernels.

1. Introduction

We show existence and regularity of spatially localized, real-valued and time-periodic solutions
(called breathers) to Maxwell’s equations

∇ ·D = 0, ∇× E = −Bt,

∇ ·B = 0, ∇×H = Dt,
(1)

without charges and currents. (1) is posed on all of R3 with an underlying material that is
either a slab waveguide or a cylindrically symmetric waveguide. We look for solutions that are
travelling parallel to the direction of the waveguide, and which are transverse-electric, i.e. the
electric field E is orthogonal to the direction of travel. We assume that the material satisfies
the constitutive relations

B = µ0H, D = ǫ0E+P(E)(2)

where µ0, ε0 ∈ (0,∞) are the vacuum permeability and permittivity, respectively. This means
that the material is magnetically inactive. However, the displacement field D depends nonlin-
early on the electric field E through the polarization field P(E), which is modeled as a sum of
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2 SEBASTIAN OHREM AND WOLFGANG REICHEL

a linear and a cubic function of E. Both parts are local in space but nonlocal in time (cf. [1]
for a physical motivation) and are given by

(3) P(E)(x, t) = ǫ0

∫ ∞

0

χ(1)(x, τ)[E(x, t− τ)] dτ

+ ǫ0

∫ ∞

0

∫ ∞

0

∫ ∞

0

χ(3)(x, τ1, τ2, τ3)[E(x, t− τ1),E(x, t− τ2),E(x, t− τ3)] dτ1dτ2dτ3.

Here x = (x, y, z) denotes the spatial variable, the susceptibility tensor χ(1)(x, τ) : R3 → R3 is
linear and χ(3)(x, τ1, τ2, τ3) : R

3 × R3 × R3 → R3 is trilinear.

By taking the curl of Faraday’s law ∇ × E = −Bt, we obtain from (1),(2) the second order
form of Maxwell’s equations

∇×∇× E+ ǫ0µ0∂
2
tE+ µ0∂

2
tP(E) = 0.(4)

While (4) is an equation only for E, the other electromagnetic fields can be recovered if (4)
holds: B is obtained from ∇ × E = −Bt by time-integration, and H,D are then determined
by the material laws (2). Next, B is divergence-free if it is divergence-free at time 0 since
∂t∇ ·B = −∇ · (∇× E) = 0. Lastly, D = ε0E + P(E) will be divergence-free because of the
choices of E,P made later.

We assume that the material is either a slab waveguide or a cylindrical waveguide. In the first
case, the susceptibility tensors χ(j) remain constant as x moves parallel to the slab. Assuming
that the slab is given by {x = 0}, this means that

χ(1)(x, τ) = χ(1)(x, τ), χ(3)(x, τ1, τ2, τ3) = χ(3)(x, τ1, τ2, τ3).(5.1)

If instead the underlying material has a cylindrical waveguide geometry, we assume that the
susceptibility tensors χ(j) depend only on the distance from x to the cylinder core which we
assume to be given by {x = y = 0}, so that

χ(1)(x, τ) = χ(1)(r, τ), χ(3)(x, τ1, τ2, τ3) = χ(3)(r, τ1, τ2, τ3).(5.2)

where r =
√

x2 + y2.

With I we denote the 3× 3 identity matrix. We assume that the materials are isotropic, i.e.

χ(1)(x, τ)[Ov] = Oχ(1)(x, τ)[v], χ(3)(x, τ1, τ2, τ3)[Ou, Ov, Ow] = Oχ(3)(x, τ1, τ2, τ3)[u,v,w]

holds for O ∈ SO(3). This means that χ(1)(x, τ) ∈ RI. For χ(3) a variety of isotropic scenarios
are possible, but in this paper we only consider two kinds of nonlinear material responses: either

χ(3)(x, τ1, τ2, τ3)[u,v,w] = h(x)ν(τ1)δ(τ2 − τ1)δ(τ3 − τ1)〈u,v〉w(6.i)

or

χ(3)(x, τ1, τ2, τ3)[u,v,w] = h(x)ν(τ1)ν(τ2)ν(τ3)〈u,v〉w(6.ii)

where δ denotes the dirac measure at 0, 〈 · , · 〉 is the standard inner product on R
3, and h, ν

are given real-valued functions.

For these material laws, we will see that (4) can be viewed as a variational problem, and we
will use a simple mountain-pass method in order to construct breather solutions to (1),(2).
We deal with the kernel of the curl operator in (4) by looking for breather solutions in special
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divergence-free ansatz spaces that we discuss next. For the slab geometry (5.1) we make the
TE-polarized traveling wave ansatz

E(x, t) = w(x, t− 1
c
z) ·





0
1
0



(7.1)

where w : R × R → R is periodic in the second variable, which we again denote by t. For the
cylindrical geometry (5.2) we instead consider the circular TE-polarized traveling wave ansatz

E(x, t) = w(r, t− 1
c
z) ·





−y/r
x/r
0



(7.2)

with r =
√

x2 + y2 and w : (0,∞)× R → R being periodic in t. Both ansatzes for the electric
field are divergence-free, so that ∇ × ∇ × E = −∆E holds, and are of a simple, essentially
two-dimensional form, which greatly simplifies the discussion. More specifically, for the slab
ansatz (7.1) problem (4) reduces to

(−∂2x − 1
c2
∂2t )w + ǫ0µ0∂

2
tw + µ0∂

2
t P (w) = 0(8.1)

and for the cylindrical ansatz (7.2) to

(−∂2r − 1
r
∂r +

1
r2

− 1
c2
∂2t )w + ǫ0µ0∂

2
tw + µ0∂

2
t P (w) = 0.(8.2)

Here, depending on the choice of the nonlinear susceptibility tensor, the scalar polarization P
is given either by

P (w)(x, t) = ǫ0

∫ ∞

0

χ(1)(x, τ)w(x, t− τ) dτ + ǫ0h(x)

∫ ∞

0

w(x, t− τ)3ν(τ) dτ(9.i)

or by

P (w)(x, t) = ǫ0

∫ ∞

0

χ(1)(x, τ)w(x, t− τ) dτ + ǫ0h(x)

(
∫ ∞

0

w(x, t− τ)ν(τ) dτ

)3

(9.ii)

for susceptibilities (6.i) and (6.ii), respectively. The simple form of the nonlinearity in P (w),
especially that the variables x and τ appear separated, are needed in order to obtain a vari-
ational problem. We denote by ∗ the convolution in time and normalize the speed of light to
c20 = (ǫ0µ0)

−1 = 1. Then problem (8.1) with polarization (9.i), which we discuss as an example,
becomes

(

−∂2x +
(

1− 1
c2
+ χ(1)∗

)

∂2t
)

w + h(x)(ν ∗ ∂2t )w3 = 0.

Inverting the convolution operator ν ∗ ∂2t formally1, we then obtain
(

ν ∗ ∂2t
)−1(−∂2x +

(

1− 1
c2
+ χ(1)∗

)

∂2t
)

w + h(x)w3 = 0.(10)

Given our assumptions, we can ensure that the linear operator is symmetric when restricted to
suitable spaces of time-periodic functions. Hence solutions formally are critical points of the
functional

J(w) =

∫

(

1
2
w ·

(

ν ∗ ∂2t
)−1(−∂2x +

(

1− 1
c2
+ χ(1)∗

)

∂2t
)

w + 1
4
h(x)w4

)

d(x, t).(11)

Using the mountain-pass method, we will find critical points and then show that they are
breather solutions to Maxwell’s equations (1),(2).

1rigorous considerations are given later
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In the literature, there are several papers treating existence of breather solutions of (4). Many
authors have considered monochromatic solutions, i.e. solutions of the form E(x, t) = E(x)eiωt+
c.c., where the complex conjugate is necessary in order to make the E-field real valued. This is
a viable approach if one ignores the higher-order harmonics e±3iωt coming from the nonlinear
part of the polarization, or if one considers a nonlinear susceptibility tensor given by

χ(3)(x, τ1, τ2, τ3)[u,v,w] = 1
2T
h(x)1[0,T ](τ1)δ(τ2 − τ1)δ(τ3)〈u,v〉w,(12)

where T = 2π
ω

is the period of the breather E. Both approaches lead to the nonlinear curl-curl
problem

∇×∇× E − ω2g(x)E − ω2h(x)|E|2E = 0(13)

which is variational provided g(x) =
∫∞

0
χ(1)(x, τ)eiωτ dτ is real valued. Instead of the cubic

nonlinearity h(x)|E|2E , saturated nonlinearities h(x, |E|2)E , which grow linearly as |E| → ∞,
are also of interest and were first investigated by Stuart et al. [20, 27–33]. In these papers
divergence-free, traveling, TE- or TM-polarized ansatz functions similar to (7.2) were used to
reduce the Maxwell problem to an elliptic one-dimensional problem and to solve it via vari-
ational methods. An extension of Stuart’s approach to more general wave-guide profiles was
given in [22]. Standing monochromatic breathers composed of axisymmetric divergence free
ansatz functions were considered in [2, 4, 5]. The next step forward to overcome special diver-
gence free ansatz functions was accomplished by Mederski et al. [3, 21, 23, 24] who considered
the full curl-curl problem (13), also for more general nonlinearities ∂Eh(x, E). The difficulties
arising from the infinite-dimensional kernel of ∇× where overcome by a Helmholtz decompo-
sition and suitable profile decompositions for Palais-Smale sequences. Alternative approaches
used limiting absorption principles [19], dual variational approaches [17, 18], approximations
near gap edges of photonic crystals [11], and monochromatic time-decaying solutions at inter-
faces of metals and dielectrics [8–10]. In the latter series of papers, also time-periodic solutions
can be found if one additionally assumes PT -symmetry of the materials.

If one does not want to rely on very specific retardation kernels as in (12) or if one wants to take
higher harmonics into account then one is naturally led to polychromatic breather solutions.
In the context of instantaneous material laws they have recently received increasing attention.
As a model problem consider

∇×∇× E + g(x)∂2t E + h(x)∂2t (|E|2E) = 0

For this problem, rigorous existence result for travelling breathers in the slab geometry (5.1)
where either g or h contains delta distributions are given in [15] by variational methods and
in [7] via bifurcation theory. Even earlier in [26] the authors used a combination of local
bifurcation theory and continuation methods in a partly analytical and partly numerical study
on traveling wave solutions where the linear coefficient g is a periodic arrangement of delta
potentials. Another rigorous existence results for breathers on finite but large time scales can
be found in [12] for a set-up of Kerr-nonlinear dielectrics occupying two different halfspaces.
In our recent paper [25] we proved the first (to the best of our knowledge) existence result
for polychromatic breathers in the context of nonlinear Maxwell’s equations without presence
of any delta-potentials. The χ(1)-part of the polarization was instantaneous and the χ(3)-part
was compactly supported in space and either instantaneous or retarded. Due to the compact
support in space both variants of the nonlinearity could be treated with the same variational
method. Beyond this result we are not aware of any rigorous treatment of polychromatic
breathers in the context of nonlinear Maxwell’s equations with time retarded material laws.
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1.1. Examples. In two theorems below, we give examples of susceptibility tensors χ(1), χ(3) for
which breather solutions of Maxwell’s equations (1),(2),(3) exist. These examples are special
cases of a general existence result given later in this chapter, cf. Theorem 1.3. Let us note
that in contrast to some of the previously mentioned results, our breather solutions are gener-
ally polychromatic in nature and the potentials considered are bounded functions. Since our
breathers lie in suitable Sobolev spaces they are sufficiently differentiable to solve Maxwell’s
equations pointwise, and they decay at infinity in an Lp-sense. They may have higher-order
space-derivatives depending on smoothness of the material coefficients in space. They are also
infinitely differentiable in time because the material properties do not change over time.

We begin with an exemplary result for the slab geometry (5.1).

Theorem 1.1. Let T > 0 denote the temporal period, ω := 2π
T

the associated frequency, and
c ∈ (0, 1) the speed of travel of the breather solution. Assume that the linear susceptibility tensor
is given by χ(1)(x, τ) = g(x)δ(τ)I, and the nonlinear susceptibility tensor χ(3) is given by (6.i)
or (6.ii) with

h(x) = h(x), ν(τ) = (2− |sin(ωt)|)1[0,T ](τ).

Moreover, assume that the potentials g, h ∈ L∞(R) have X-periodic backgrounds gper, hper ∈
L∞(R) such that

g(x)− gper(x) → 0, h(x)− hper(x) → 0 as x→ ±∞
and the inequalities

gper ≤ g, ess sup
R

g < 1
c2
− 1, hper ≤ h, hper 6≤ 0

are satisfied. Then there exist nonzero time-periodic solutions D,E,B,H of Maxwell’s equations
(1),(2),(3) where E is of the form (7.1). They satisfy

∂nt E ∈ W 2,p(Ω;R3), ∂nt B, ∂
n
t H ∈ W 1,p(Ω;R3), ∂nt D ∈ Lp(Ω;R3)

for all n ∈ N0, p ∈ [2,∞] and all domains Ω = R× [y, y + 1]× [z, z + 1]× [t, t+ 1], with norm
bounds independent of y, z, t.

The potentials g, h describe the spatial dependency of the polarization field. In the above
theorem we have required them to be asymptotically periodic at ±∞. This periodic structure
helps us to overcome noncompactness of embeddings on R. The assumption on the ordering
g ≥ gper, h ≥ hper is a standard tool to resolve noncompactness issues also for the nonperiodic
problem. The upper bound 1

c2
− 1 on g and the choice of ν ensure that (4) is elliptic. One

aspect of the choice of ν is that its Fourier coefficients are positive. This aspect will become
very important in the general result of Theorem 1.3. Ellipticity will ensure that the associated
energy has a mountain-pass geometry, and a mountain-pass method will be used to construct
breather solutions. Note also that breathers are localized in the x-direction (in the Lp-sense
stated above), but not in y, z, or t, which is due to the ansatz (7.1), since all solutions satisfying
this ansatz necessarily are independent of y and periodic in both z and t.

Similar to Theorem 1.1 for the slab geometry, below we give an exemplary result with cylindrical
geometry (5.2).
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Theorem 1.2. Let T > 0 be the period of the breather, c ∈ (0, 1) be its speed, and g, h ∈
L∞([0,∞)) be material coefficients. Define the linear susceptibility by χ(1)(x, τ) := g(r)δ(τ)I
and let the nonlinear susceptibility χ(3) be given by (6.i) or (6.ii) with h(x) = h(r), ν(τ) =

(2− |sin(ωt)|)1[0,T ](τ) where r :=
√

x2 + y2, ω := 2π
T

. Further let

ess sup
R

g < 1
c2
− 1, h 6≤ 0.

Then there exist nonzero time-periodic solutions D,E,B,H of Maxwell’s equations (1),(2),(3)
where E is of the form (7.2). They satisfy

∂nt E ∈ W 2,p(Ω;R3), ∂nt B, ∂
n
t H ∈ W 1,p(Ω;R3), ∂nt D ∈ Lp(Ω;R3)

for all n ∈ N0, p ∈ [2,∞] and all domains Ω = R
2 × [z, z + 1] × [t, t + 1], with norm bounds

independent of z, t.

In contrast to Theorem 1.1, in Theorem 1.2 we do not need any asymptotics for the potentials
g, h. This is because the cylindrical setting itself comes with compactness, as we discuss in
Section 5. To illustrate this, recall that the Sobolev embedding H1(R2) →֒ Lp(R2) for p ∈ [2,∞)
becomes compact when restricted to radially symmetric functions. Lastly, the ansatz (7.2) is
periodic in both z and t, so breather solutions in the cylindrical setting decay in the x and y
directions orthogonal to the direction of propagation.

1.2. Main theorem. Before stating the main theorem, we fix some notation.

1.2.1. Measures on torus and real line, periodic reduction of a measure. Since breathers are
time-periodic, the natural time domain is the torus T := R/TZ with period T , and we denote
the canonical projection by PT : R → T. With M(T), M(R) we denote the set of all R-valued
measures on the Borel σ-algebra of T and R, respectively. The push-forward map P ∗

T
: M(R) →

M(T) is defined as follows: for λ ∈ M(R) we set P ∗
T
(λ) ∈ M(T) by P ∗

T
(λ)(E) = λ(P−1

T
(E)) for

any Borel subset E ⊆ T. The new measure P ∗
T
(λ) ∈ M(T) is called the periodic reduction of

λ. In this way, the torus is equipped with the measure dt = 1
T
P ∗
T
(1[0,T ] dτ), where dτ denotes

the Lebesgue measure on R.

1.2.2. Instantaneous vs. retarded χ(1)-contribution. While the nonlinear susceptibility tensor
χ(3) necessarily represents a retarded material response, cf. (6.i) or (6.ii), the χ(1)-contribution
to the material response may be instantaneous or retarded. The first case is given by χ(1)(x, τ) =
g(x)δ(τ)I or χ(1)(x, τ) = g(r)δ(τ)I from Section 1.1. The second case may be written in the
form χ(1)(x, τ) dτ = dG(x)(τ)I where for fixed x ∈ R

3 we have that G(x) ∈ M(R) is an
R-valued Borel measure. Mathematically, the second case comprises the first and hence in the
following an instantaneous χ(1)-contribution is subsumed in the retarded case.
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1.2.3. Fourier transform. Let us fix a convention for Fourier series and Fourier transform. For
a time-periodic function v : T → C we define its Fourier coefficients by v̂k = Fk[v] =

∫

T
vek dt

with ek(t) := eikωt, ω := 2π
T

. Thus the inverse is v(t) = F−1
t [v̂k] =

∑

k∈Z v̂kek(t). For a function
v depending on space and T -periodically on time, v̂ will always denote the (discrete) Fourier
transform in time. In the same way we define the discrete Fourier transform in time λ̂ of a
measure λ ∈ M(T). Finally, a function v : T → R or a measure λ ∈ M(T) is called positive
definite if the sequence v̂ = (v̂k)k∈Z or λ̂ = (λ̂k)k∈Z, respectively, consists of nonnegative entries.

Similarly we fix the notion of the spatial (continuous) Fourier transform of a space-dependent
function v : Rd → C, writing Fξ[v] =

∫

Rd v(x)eix·ξ
dx

(2π)d/2
with inverse F−1

x [v] =
∫

Rd v(ξ)e
ix·ξ dξ

(2π)d/2
.

The spatial (continuous) Fourier transform of a function depending on both space and time is
defined analogously, and we omit indices of F ,F−1 when they are clear from the context.

1.2.4. Cylindrical and slab geometry. We say that a map A : R3 → Y possesses cylindrical
symmetry if A(x) = A(x̃) for all x = (x, y, z), x̃ = (x̃, ỹ, z̃) ∈ R3 with x2 + y2 = x̃2 + ỹ2. In
this case we write A(x) = A(r) with r =

√

x2 + y2. Likewise we say that a map A : R3 → Y
possesses slab symmetry if A(x) = A(x̃) for all x = (x, y, z), x̃ = (x, ỹ, z̃) ∈ R3 and write
A(x) = A(x) in this case.

Theorem 1.3. Let T > 0 denote the temporal period, ω := 2π
T

the associated frequency, and
c ∈ (0, 1) the speed of travel of the breather solution. We make the following assumptions:

(A1) The linear susceptibility tensor χ(1) is given by χ(1)(x, τ) dτ = dG(x)(τ)I where G : R3 →
M(R) is measurable. The nonlinear susceptibility tensor χ(3) is given by (6.i) or (6.ii)
where h ∈ L∞(R3) and ν ∈ M(R).

(A2) G and h both have either cylindrical or slab geometry.
(A3) sup

x∈R3‖G(x)‖M(R) <∞ and h 6≤ 0.

(A4) The periodic reduction G(x) of G(x) is even in time for all x ∈ R3 and satisfies
sup

x∈R3,k∈Z Fk[G(x)] < 1
c2
− 1.

(A5) The periodic reduction N of ν is even in time, 6= 0, and |k|−β
. Fk[N ] . |k|−α for all

k ∈ Z \ {0} with Fk[N ] 6= 0 and some β ≥ α > α⋆ where α⋆ = 1 in the slab geometry
and α⋆ = 3

2
in the cylindrical geometry.

(A6) In case of the slab geometry, one of the following holds in addition:
(A6a) h(x) → 0 as x→ ±∞,
(A6b) G(x) = Gper(x)+Gloc(x) and h(x) = hper(x)+hloc(x) where Gper(x), h(x) are periodic

with common period, and we have
∥

∥Gloc(x)
∥

∥

M(T)
→ 0 and hloc(x) → 0 as x→ ±∞.

Moreover, Gloc(x) is positive definite for all x ∈ R and hloc ≥ 0, hper 6≤ 0 hold.

Under these assumptions, there exists a nontrivial breather solution D,E,B,H of Maxwell’s
equations (1),(2). It satisfies

∂nt E ∈ W 2,p(Ω;R3), ∂nt B, ∂
n
t H ∈ W 1,p(Ω;R3), ∂nt D ∈ Lp(Ω;R3)

for all n ∈ N0, p ∈ [2,∞] and all domains Ω that are of the form Ω = R× [y, y + 1]× [z, z +
1] × [t, t + 1] in the slab case and Ω = R2 × [z, z + 1] × [t, t + 1] in the cylindrical case, with
norm bounds independent of y, z, t.
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Remark 1.4. Our assumptions (A1)–(A5) on the structure of the linear and nonlinear retar-
dation kernels can be seen as a systematic attempt to find out what can be done in a variational
setting. The main assumptions are expressed via the Fourier coefficients of G(x) and N . The
fact that both G(x) and N have real Fourier coefficients stems from their evenness in time
which could be understood physically as a balance of loss and gain within one period of time.
In assumption (A4) the upper bound on Fk[G(x)] can be achieved by taking a sufficiently small
propagation speed c. It is exactly this assumption which makes the linear operator in (10) el-
liptic, and combined with positive definiteness of N it makes the quadratic part in (11) positive
definite.

Remark 1.5. If in the setting of Theorem 1.3 the set R := {k ∈ Z \ {0} : Fk[N ] 6= 0} is
infinite then we moreover have existence of infinitely many nontrivial breathers with the stated
properties.

Remark 1.6. The sign assumptions on Gloc, hloc in (A6b) of Theorem 1.3 yield a strict relation
between the mountain-pass energy level of the problem compared to the energy of the “periodic”
problem, (i.e. with G, h replaced by Gper, hper), see Lemma 3.7 for a precise formulation. This
energy inequality gives us some compactness which is crucial for showing existence of breathers.
The examples Theorems 1.1 and 1.2 satisfy (A1)–(A6). For (A5) this is true because

Fk[N ] = Fk[2− |sin(ωt)|] =











2− 2
π
, k = 0,

0, k odd,
2

π(k2−1)
, k 6= 0 even.

Breather solutions are more regular when the material coefficients G, h have higher regularity.
For Ω ⊆ R4 we denote by Cj

b (Ω;R
3) the space of j-times differentiable functions mapping into

R3 with bounded derivatives, and abbreviate C̃j
b (Ω;R

3) := W j,2(Ω;R3) ∩ Cj
b (Ω;R

3).

Corollary 1.7. If in the context of Theorem 1.3 we additionally have

(R) g ∈ C l
b(R

3;M(R)), h ∈ C l
b(R

3) for some l ∈ N0,

then the regularity improves to

∂nt E ∈ C̃2+l
b (Ω;R3), ∂nt B, ∂

n
t H ∈ C̃1+l

b (Ω;R3), ∂nt D ∈ C̃ l
b(Ω;R

3)

with norm bounds independent of y, z, t.

1.3. Outline of paper. We begin by investigating the slab geometry (5.1). In Section 2
we convert Maxwell’s equations into the Euler-Lagrange equation of a suitable Lagrangian
functional, and show that this functional has mountain-pass geometry. Using the mountain-
pass theorem, in Section 3 we show that the Euler-Lagrange equation admits a ground state
solution. The convergence of Palais-Smale sequences approaching the ground state level is
unclear in general because the spatial domain is unbounded, and thus our arguments depend
on the particular form of the potentials in (A6). For (A6a), the nonlinearity is compact which
makes this the easiest case. For (A6b) we first rely on translation arguments in space for the
purely periodic case. Then we use comparison arguments for the perturbed periodic case. After
having shown existence and multiplicity of breathers, we investigate their regularity in Section 4.
Finally, Section 5 details the arguments for the cylindrical geometry (5.2) and highlights the
differences to the slab geometry.
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2. variational problem

From now on, we always assume that the assumptions of Theorem 1.3 are satisfied. We trans-
form (8.1) into a problem for a surrogate variable u, which we then treat using the mountain
pass method. We only consider the slab problem (8.1) as the cylindrical problem (8.2) can be
treated similarly. In Section 5 we discuss the differences between the slab and the cylindrical
problem, and how to treat the latter.

Using the periodic reduction G(x),N of g(x), ν we can rewrite the scalar polarization (9.i) as

P (w)(x, t) = ǫ0

∫ ∞

0

w(x, t− τ) dg(x)(τ) + ǫ0h(x)

∫ ∞

0

w(x, t− τ)3 dν(τ)

= ǫ0

∫

T

w(x, t− τ) dG(x)(τ) + ǫ0h(x)

∫

T

w(x, t− τ)3 dN (τ)

since w is T -periodic in t. We abbreviate this by writing

P (w) = ǫ0(G ∗ w) + ǫ0h(N ∗ w3)

where ∗ denotes convolution of a measure with a function on T. Similarly, the polarization
(9.ii) can be written in the form

P (w) = ǫ0(G ∗ w) + ǫ0h(N ∗ w)3,
Next we define the projection PR onto the set R := {k ∈ Z \ {0} : Fk[N ] 6= 0} of “regular”
frequency indices by

PR[v] = F−1
[

1k∈RFk[v]
]

,

as well as the projection onto the “singular” frequency indices S := Z \ R by PS[v] :=
F−1

[

1k∈SFk[v]
]

= (I − PR)[v]. We apply both to (8.1) for time-periodic w to obtain the
two problems

(

−∂2x + ∂2t (1− 1
c2
+ G∗)

)

PR[w] + h∂2t PR[N(w)] = 0,
(

−∂2x + ∂2t (1− 1
c2
+ G∗)

)

PS[w] + h∂2t PS[N(w)] = 0,

where the cubic nonlinearity N(w) is given by

N(w) = N ∗ w3 or N(w) = (N ∗ w)3

corresponding to (6.i) and (6.ii), respectively.

Let us first consider the nonlinearity N(w) = N ∗ w3. Using PS(N∗) = 0 and assuming that
the linear operator

(

−∂2x + ∂2t (1− 1
c2
+ G∗)

)

is injective, we can further simplify this to
(

−∂2x + ∂2t (1− 1
c2
+ G∗)

)

w + h∂2t (N ∗ w3) = 0, PS[w] = 0.

Observe that the convolution operator N∗ is formally invertible on kerPS since Fk[N ] 6= 0 for
k ∈ R. Therefore we may rephrase this problem as

(−∂2tN∗)−1
(

−∂2x + ∂2t (1− 1
c2
+ G∗)

)

u− hPR[u
3] = 0, PS[u] = 0(14)

with u := w.
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For the second nonlinearity N(w) = (N ∗ w)3 we set u := N ∗ w and therefore get

(−∂2tN∗)−1
(

−∂2x + ∂2t (1− 1
c2
+ G∗)

)

u− hPR[u
3] = 0, PS[u] = 0,

(

−∂2x + ∂2t (1− 1
c2
+ G∗)

)

PS[w] + h∂2t PS[u
3] = 0.

(15)

Note that the first of the two equations above is (14). Hence, also for the second nonlinearity,
it is sufficient to solve (14) for u and then use the second equation to determine the missing
values of Fk[w] for k ∈ S.

We first focus our attention on investigating the “effective problem” (14), which using

V (x) := 1
c2
− 1− G∗

we can write as

(−∂2tN∗)−1
(

−∂2x − V (x)∂2t
)

u− hPR[u
3] = 0, PS[u] = 0.(16)

Since G,N are even in time, the differential operator above is symmetric, and therefore solutions
of (16) formally are critical points of the functional

J(u) =

∫

R×T

(

1
2
u · (−∂2tN∗)−1

(

−∂2x − V (x)∂2t
)

u− 1
4
h(x)u4

)

d(x, t), PS[u] = 0.

Next we properly define the domain H of the functional J sketched above, and we investigate
embeddings H →֒ Lp.

Definition 2.1. We define the space

H :=
{

u ∈ L2(R× T) : ûk ≡ 0 for k ∈ Z \R, ‖u‖2H := 〈〈u, u〉〉H <∞
}

where

〈〈u, v〉〉H =
∑

k∈R

1

ω2k2Fk[N ]

∫

R

(

û′kv̂
′
k + ω2k2ûkv̂k

)

dx

Note that Vk(x) :=
1
c2
− 1− Fk[G(x)] is bounded and strictly positive by assumption, so that

〈u, v〉H :=
∑

k∈R

1

ω2k2Fk[N ]

∫

R

(

û′kv̂
′
k + ω2k2Vk(x)ûkv̂k

)

dx

defines an equivalent inner product on H.

Note that H is a Hilbert space since H →֒ L2. Assumption (A5) on the decay of the Fourier
coefficients of N ensures that H continuously embeds into Lp(R× T) for all p ∈ [2, p⋆) where
p⋆ > 4, as we show below in Lemma 2.4. This allows us to write

J(u) = 1
2
〈u, u〉H − 1

4

∫

R×T

h(x)u4 d(x, t) for u ∈ H,

and to define solutions u ∈ H of (14) in the following way.

Definition 2.2 (weak solution). A function u : R×T → R is called a weak solution to (14) if
u ∈ H and

〈u, v〉H −
∫

R×T

h(x)u3v d(x, t) = 0

for all v ∈ H. This is equivalent to J ′(u) = 0.
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It is standard to verify the validity of the following density result for H , which will prove very
useful for some approximation arguments.

Lemma 2.3. The set {u ∈ C∞
c (R× T) : ûk ≡ 0 for almost all k ∈ Z} ∩H is dense in H.

Lemma 2.4. For any p ∈ [2, p⋆) with p⋆ := 4
2−α

(p⋆ = ∞ if α ≥ 2), the embedding H →֒
Lp(R× T) is continuous and the embedding H →֒ Lp

loc(R× T) is compact.

Proof. Let us first show continuity. For this, we calculate

‖u‖p . ‖Fξ,k[u]‖p′ .
∥

∥

∥

∥

∥

√

ω2k2Fk[N ]

ξ2 + ω2k2

∥

∥

∥

∥

∥

r

·
∥

∥

∥

∥

∥

√

ξ2 + ω2k2

ω2k2Fk[N ]
Fξ,k[u]

∥

∥

∥

∥

∥

2

. ‖u‖H

where 1
r
= 1

2
− 1

p
< α

4
and where by (A5) the first term has been estimated as follows

∥

∥

∥

∥

∥

√

ω2k2Fk[N ]

ξ2 + ω2k2

∥

∥

∥

∥

∥

r

r

=
∑

k∈R

∫

R

(

ω2k2Fk[N ]

ξ2 + ω2k2

)r/2

dξ

=

∫

R

(

1

ξ2 + 1

)r/2

dξ ·
∑

k∈R

|ωk|Fk[N ]
r/2 .

∑

k∈R

|k|1−αr
2 <∞.

In order to show compactness, define for K ∈ Nodd the projection onto “small” frequencies
PK : H → H by PK [u] = F−1

t

[

1|k|≤KFk[u]
]

. Then on PKH the norm ‖u‖H is equivalent to

|||u||| =
∑

k∈R
|k|≤K

‖ûk‖H1(R).

Since the embedding H1(R) → Lp
loc(R) is compact for any p ∈ [2,∞] and the sum above is

finite, it follows that PK : H → Lp
loc(R× T) is compact. Next, the calculations above show for

u ∈ H that

‖u− PK [u]‖p ≤ C
∑

k∈R
|k|>K

|k|1−αr
2 ‖u‖H

for some C > 0 independent of K, so that PK → I in B(H ;Lp(R × T)) as K → ∞. Thus H
embeds compactly into Lp

loc(R× T). �

Definition 2.5. For s ∈ R we define the fractional time-derivative |∂t|s as the Fourier multiplier
|∂t|sv(t) = F−1

t [|ωk|sv̂k].
Corollary 2.6. As in the proof of Lemma 2.4 we see that for p ∈ [2, p⋆) and ε > 0 sufficiently
small (depending on α, p), the map |∂t|ε : H → Lp(R×T) is bounded and |∂t|ε : H → Lp

loc(R×T)
is compact.

Let us recall the notion of a Palais-Smale sequence.

Definition 2.7. A sequence (un) in H is called a Palais-Smale sequence for J if J ′(un) → 0
in H ′ and J(un) converges in R as n → ∞. If limn→∞ J(un) = c, we call (un) a Palais-Smale
sequence at level c.

In the following lemma we show a variant of the concentration-compactness principle that will
be a useful tool for extracting a nonzero limit from Palais-Smale sequences.
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Lemma 2.8. Let (un) be a bounded sequence in H, r > 0 and p̃ ∈ [2, p⋆) such that

sup
x∈R

‖un‖Lp̃([x−r,x+r]×T) → 0

as n→ ∞. Then un → 0 in Lp(R× T) for all p ∈ (2, p⋆).

Proof. By Hölder’s inequality and Lemma 2.4 it suffices to show the result for p̃ = 2 and one
p ∈ (2, p⋆), which we shall choose so close to 2 that 2 < q := 4

4−p
< p⋆. Let φm : R → [0, 1] be a

smooth partition of unity with supp φm ⊆ [(m− 1)r, (m+ 1)r], ‖φ′
m‖∞ ≤ 2

r
. Using that at any

point of R at most 2 of the φm are nonzero, we calculate

‖un‖pp =
∫

R×T

∣

∣

∣

∣

∣

∑

m∈Z

φmun

∣

∣

∣

∣

∣

p

d(x, t)

≤ 2p−1

∫

R×T

∑

m∈Z

|φmun|p d(x, t)

= 2p−1
∑

m∈Z

‖φmun‖pp

≤ 2p−1
∑

m∈Z

‖φmun‖2q‖φmun‖p−2
2

. sup
x∈R

‖un‖p−2
L2([x−r,x+r]×T)

∑

m∈Z

‖φmun‖2H .

Moreover, since

‖φmun‖2H =
∑

k∈R

1

ω2k2Fk[N ]

∫

R

(

|φ′
mûk + φmû

′
k|2 + ω2k2|φmûk|2

)

dx

≤ C
∑

k∈R

1

ω2k2Fk[N ]

∫ (m+1)r

(m−1)r

(

|û′k|2 + ω2k2|ûk|2
)

dx,

it follows that
∑

m∈Z‖φmun‖2H ≤ 2C‖u‖2H . Thus, from the assumptions we obtain ‖un‖p → 0
as n→ ∞. �

3. Existence of ground states

In the following, let J be given by Definition 2.2. We call the energy level

cgs := inf
u∈H\{0}
J ′(u)=0

J(u)

the ground state energy level, and any solution u ∈ H \ {0} of J ′(u) = 0 with J(u) = cgs a
ground state of J . Note that cgs = +∞ if there are no nonzero critical points of J . Next we
present the main result of this section. The rest of this section is dedicated to its proof.

Theorem 3.1. There exists a ground state of J .

We first note that the following necessary condition for existence of ground states holds.
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Lemma 3.2. cgs > 0.

Proof. By Lemma 2.4 we have J ′(u)[u] = 〈u, u〉H + O(‖u‖4H) as u → 0, so there exists c > 0
with ‖u‖H ≥ c for all u ∈ H \ {0} with J ′(u) = 0. The claim follows from this since for every
critical point u of J we have J(u) = J(u)− 1

4
J ′(u)[u] = 1

4
〈u, u〉H . �

We will extract the ground state as a limit of a suitable Palais-Smale sequence. Next we use
the mountain-pass theorem to obtain a particular Palais-Smale sequence.

Proposition 3.3. There exists u0 ∈ H with J(u0) < 0. For such u0, the mountain-pass energy
level

cmp := inf
γ∈C([0;1];H)

γ(0)=0,γ(1)=u0

sup
s∈[0,1]

J(γ(s))

is positive and there exists a Palais-Smale sequence for J at level cmp.

Proof. For the construction of a suitable u0 we choose ϕ ∈ C∞
c (R) with

∫

R
hϕ4 dx > 0, which

exists since h 6≤ 0 and C∞
c (R) is dense in L4(R). We then choose u0(x, t) = rRe[ϕ(x)ek0(t)] for

some k0 ∈ R and r > 0. This implies that

J(u0) =
1
2
r2〈Re[ϕ(x)ek0(t)],Re[ϕ(x)ek0(t)]〉H − 3

32
r4

∫

R

hϕ4 dx

is negative, provided r has been chosen sufficiently large. By the embedding H →֒ L4 we
moreover have

J(u) = 1
2
〈u, u〉H −O

(

‖u‖4H
)

as u→ 0. Thus cmp > 0 and by the mountain pass theorem, cf. [34], there exists a Palais-Smale
sequence (un) at level c. �

Lemma 3.4. Any Palais-Smale sequence for J is bounded.

Proof. Let (un) be a Palais-Smale sequence at level c. Then

〈un, un〉H = 4J(un)− J ′(un)[un] = 4c+ o(1) + o(‖un‖H)
as n→ ∞, which shows that (un) is bounded in H . �

Next we show the following result on weakly convergent Palais-Smale sequences in our setting.

Lemma 3.5. Let (un) be a Palais-Smale sequence for J with J(un) → c and un ⇀ u in H.
Then u is a critical point of J and J(u) ≤ c. Moreover, if u 6= 0 and c = cgs then u is a ground
state and un → u in H.

Proof. By Lemmas 2.4 and 3.4 we have un → u in L4
loc. Thus for compactly supported v ∈ H

it follows that

J ′(un)[v] = 〈un, v〉H −
∫

R×T

h(x)u3nv d(x, t) → 〈u, v〉H −
∫

R×T

h(x)u3nv d(x, t) = J ′(u)[v]
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so that J ′(u)[v] = 0. By a density argument (cf. Lemma 2.3) it follows that u is a critical point
of J . Next we calculate

J(u) = J(u)− 1
4
J ′(u)[u] = 1

4
〈u, u〉H ≤ 1

4
lim
n→∞

〈un, un〉H = lim
n→∞

J(un)− 1
4
J ′(un)[un] = c.

If c = cgs, then we have J(u) ≥ cgs since u 6= 0 by assumption, and thus from the above
inequality we find J(u) = cgs and in addition 〈un, un〉H → 〈u, u〉H . Combined with un ⇀ u in
H this shows un → u in H . �

In many situations, e.g. in a translation-invariant setting, there are always Palais-Smale se-
quences converging weakly to 0. Therefore the main task in the following will be to find a
Palais-Smale sequence with un ⇀ u 6= 0. The arguments for this (and the proof of Theo-
rem 3.1) differ between the types of nonlinearity, and are split into subsections accordingly.

3.1. Proof of Theorem 3.1 for (A6a) and the purely periodic case of (A6b). First we
show how to extract a nonzero limit from a given Palais-Smale sequence.

Lemma 3.6. Assume (A6a) or (A6b) with Gloc, hloc ≡ 0. Let (un) be a Palais-Smale sequence
for J at level c > 0. Then there exists a critical point u ∈ H \ {0} of J with J(u) ≤ c.

Proof. Part 1: We consider (A6a). Up to a subsequence we have un ⇀ u in H and un → u
in L4

loc by Lemmas 2.4 and 3.4, where Lemma 3.5 guarantees that u is a critical point of J .
Moreover, since h(x) → 0 as x→ ±∞, we have h(x)u3n → h(x)u3 in L4/3(R× T). This implies
for v ∈ H that

〈un − u, v〉H = J ′(un)[v]− J ′(u)[v] +

∫

R×T

h(x)(u3 − u3n)v d(x, t) = o(‖v‖H)

as n→ ∞. So un → u in H , and in particular J(u) = c and u 6= 0 hold.

Part 2: We now consider (A6b) with Gloc, hloc ≡ 0. Since
∫

R×T

h(x)u4n = 4J(un)− 2J ′(un)[un] → 4c,

we have un 6→ 0 in L4(R× T). Let X > 0 denote the period of G and h. By Lemma 2.8 there
exist xn ∈ R with

lim inf
n→∞

‖un‖L4([xn−X,xn+X]×T) > 0(17)

and w.l.o.g. we may assume xn ∈ XZ. Let us define a new sequence ũn by ũn(x, t) = un(x −
xn, t), so that J(ũn) = J(un) → c and J ′(ũn) → 0. Up to a subsequence we have ũn ⇀ u in H
where u 6= 0 by (17). The claim now follows from Lemma 3.5 applied to (ũn). �

Proof of Theorem 3.1 for (A6a) and (A6b) with Gloc, hloc ≡ 0. Combining Proposition 3.3 and
Lemma 3.6 we see that there exists a nonzero critical point of J . Thus cgs <∞ and by definition
of cgs there exists a sequence (un) of critical points of J with J(un) → cgs. Since cgs > 0 by
Lemma 3.2, applying Lemma 3.6 to (un) we find a ground state of J . �
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3.2. Proof of Theorem 3.1 for (A6b). We call the problem with G, h replaced by Gper, hper

the periodic problem and denote it with the superscript “per”. The previous subsection guar-
antees the existence of a periodic ground state uper of Jper.

Note that both J and Jper are defined on the same Hilbert space H . The assumption (A6b)
implies that J ≤ Jper on H and, assuming (Gloc, hloc) 6= 0, the inequality is even strict on
functions which do not have zero sets of positive measure. For our nonlocal problem (14) we
do not know whether or not a unique continuation theorem holds, which is why we cannot rule
out that a critical point of J or Jper could have a zero set of positive measure. Nevertheless,
the subsequent arguments work without a unique continuation theorem and are based on the
comparison of energy levels between our current and the periodic problem.

Lemma 3.7. Assume that no ground state of Jper is a critical point of J . Then there exists
u0 ∈ H with J(u0) < 0 such that the mountain-pass energy level

cmp := inf
γ∈C([0;1];H)

γ(0)=0,γ(1)=u0

sup
s∈[0,1]

J(γ(s))

satisfies 0 < cmp < cpergs .

Proof. Let uper be a ground state of Jper. As uper is not a critical point of J , we have Gloc∗uper 6=
0 or hloc(uper)3 6= 0. By the assumptions on the signs of Gloc, hloc we moreover have

〈uper, uper〉H ≤ 〈uper, uper〉perH and
∫

R×T

h(x)(uper)4 d(x, t) ≥
∫

R×T

hper(x)(uper)4 d(x, t)

where at least one inequality is strict. In particular, J(super) < Jper(super) holds for s 6= 0.
Now set u0 :=

√
2uper. Then J(u0) < Jper(u0) = 0 and

cmp ≤ max
s∈[0,1]

J(su0) < max
s∈[0,1]

Jper(su0) = Jper(uper) = cpergs .

Positivity of cmp was already shown in Proposition 3.3. �

Similar to Lemma 3.6 of the previous subsection, we require a result on convergence of a given
Palais-Smale sequence, which we present next.

Lemma 3.8. Assume (A6b). Let un be a Palais-Smale sequence for J at level c ∈ (0, cpergs ).
Then there also exists a critical point u ∈ H \ {0} of J with J(u) ≤ c.

Proof. We denote by X the spatial period of Gper, hper. As in the proof of Lemma 3.6, Part 2,
we have that un 6→ 0 in L4(R× T) and that a sequence xn ∈ XZ exists such that

lim inf
n→∞

‖un‖L4([xn−X,xn+X]×T) > 0.

We claim that un 6→ 0 in L4
loc along any subsequence.

Assume for a contradiction that there exists a subsequence of (un), which we again denote by
(un), such that un → 0 in L4

loc. Since un 6→ 0 in L4, we necessarily have |xn| → ∞. We define
ũn by ũn(x, t) = un(x− xn, t). Then up to a subsequence we have ũn ⇀ u in H and ũn → u in
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L4
loc for some u ∈ H \ {0}. For compactly supported v ∈ H we set vn(x, t) = v(x + xn, t) and

calculate

J ′(un)[vn] = 〈un, vn〉H −
∫

R×T

h(x)u3nvn d(x, t)

= 〈un, vn〉perH −
∫

R×T

hper(x)u3nvn d(x, t)

−
∑

k∈R

∫

R

Fk[Gloc(x)]

Fk[N ]

(

Fk[un]Fk[vn]
)

dx−
∫

R×T

hloc(x)u3nvn d(x, t)

= 〈ũn, v〉perH −
∫

R×T

hper(x)ũ3nv d(x, t)

−
∑

k∈R

∫

R

Fk[Gloc(x− xn)]

Fk[N ]

(

Fk[ũn]Fk[v]
)

dx−
∫

R×T

hloc(x− xn)ũ
3
nv d(x, t)

→ 〈u, v〉perH −
∫

R×T

hper(x)u3v d(x, t) = (Jper)′(u)[v]

where we used |xn| → ∞ and Gloc(x) → 0, hloc(x) → 0 as x → ±∞. This shows that u 6= 0 is a
critical point of Jper, and in particular Jper(u) ≥ cpergs holds. However, for fixed R > 0 we have

∑

k∈R

1

ω2k2Fk[N ]

∫ R

−R

(

|Fk[u]
′|2 + ω2k2V per

k (x)|Fk[u]|2
)

dx

≤ lim inf
n→∞

∑

k∈R

1

ω2k2Fk[N ]

∫ R

−R

(

|Fk[ũn]
′|2 + ω2k2V per

k (x)|Fk[ũn]|2
)

dx

= lim inf
n→∞

∑

k∈R

1

ω2k2Fk[N ]

∫ xn+R

xn−R

(

|Fk[un]
′|2 + ω2k2V per

k (x)|Fk[un]|2
)

dx

= lim inf
n→∞

∑

k∈R

1

ω2k2Fk[N ]

∫ xn+R

xn−R

(

|Fk[un]
′|2 + ω2k2Vk(x)|Fk[un]|2

)

dx

≤ lim inf
n→∞

〈un, un〉H
from which 〈u, u〉perH ≤ lim infn→∞〈un, un〉H follows in the limit R → ∞. This implies

c < cpergs ≤ Jper(u) = Jper(u)− 1
4
(Jper)′(u)[u] = 1

4
〈u, u〉perH

≤ 1
4
lim inf
n→∞

〈un, un〉H = lim inf
n→∞

J(un)− 1
4
J ′(un)[un] = c,

a contradiction.

Thus we have shown the claim. By Lemmas 2.4 and 3.4 up to a subsequence we have un ⇀ u
in H and un → u in L4

loc, where we now know u 6= 0. Applying Lemma 3.5 completes the
proof. �

Proof of Theorem 3.1 for (A6b). Assume first that cgs < cpergs holds. Let un be a sequence of
critical points of J with J(un) → cgs. From Lemmas 3.2 and 3.8 it follows that there exists a
ground state of J . In the general situation, we distinguish between two cases.



TRAVELLING BREATHER SOLUTIONS FOR CUBIC NONLINEAR MAXWELL EQUATIONS 17

Case 1: If there exists a ground state uper of Jper which also is a critical point of J then clearly
cgs ≤ cpergs holds. If cgs < cpergs there is nothing left to show, and when cgs = cpergs then uper is a
ground state of J .

Case 2: If no ground state of Jper solves J ′(u) = 0, then by Lemma 3.7 there exists a Palais-
Smale sequence un for J at some level cmp ∈ (0, cpergs ). Since cgs ≤ cmp by Lemma 3.8, this shows
cgs ≤ cmp < cpergs . �

4. Regularity

So far we have shown existence of a ground state to (14). In this section, we discuss its regularity
properties.

We proceed in two steps. First, we show regularity for the solution u to (16): It is infinitely
differentiable in time, twice differentiable in space, and derivatives lie in L2 ∩ L∞. We also
show that if the material parameters are l times continuously differentiable, then u is l+2 time
differentiable in space and derivatives lie in L2 ∩ Cb.

Then we transfer this regularity from the function u to the electromagnetic fields D,E,B,H
since these can be expressed as functions of u.

We begin by showing infinite time differentiability in the space H , see Lemma 4.2, which we
prepare with an auxiliary result.

Lemma 4.1. Let s > 0 and u, |∂t|su ∈ Lp(R×T) where p ∈ [3,∞]. Then |∂t|s(u3) ∈ Lp/3(R×T).

Proof. By [6, Proposition 1] the estimate

‖|∂t|svw‖Lr(T) . ‖|∂t|sv‖Lp1 (T)‖w‖Lq1 (T) + ‖v‖Lp2 (T)‖|∂t|sw‖Lq2 (T)

holds for all r, pj, qj ∈ [1,∞] with 1
r
= 1

pj
+ 1

qj
and v ∈ C∞(T). By a density argument we

obtain
∥

∥|∂t|s(u3)
∥

∥

Lp/3(R×T)
=

∥

∥

∥

∥|∂t|s(u3)
∥

∥

Lp/3(T)

∥

∥

Lp/3(R)

.
∥

∥‖|∂t|su‖Lp(T)

∥

∥u2
∥

∥

Lp/2(T)
+ ‖u‖Lp(T)

∥

∥|∂t|s(u2)
∥

∥

Lp/2(T)

∥

∥

Lp/3(R)

.
∥

∥‖|∂t|su‖Lp(T)‖u‖2Lp(T)

∥

∥

Lp/3(R)

≤
∥

∥‖|∂t|su‖Lp(T)

∥

∥

Lp(R)

∥

∥‖u‖Lp(T)

∥

∥

2

Lp(R)
. �

Lemma 4.2. Let u ∈ H be a critical point of J . Then |∂t|su ∈ H for all s ∈ R.

Proof. Since u ∈ H , |∂t|su ∈ H holds for s ≤ 0. Moreover, if |∂t|su ∈ H then |∂t|σu ∈ H for all
σ ≤ s. By Corollary 2.6 there exists ε > 0 such that |∂t|ε : H → L4(R × T) is bounded. We
show by induction that |∂t|nεu ∈ H holds for n ∈ N0. So assume |∂t|nεu ∈ H for fixed n ∈ N0.
Let v ∈ H with |∂t|(n+1)εv ∈ H . Then we have

0 = J ′(u)[|∂t|(n+1)εv]

=
〈

u, |∂t|(n+1)εv
〉

H
−
∫

R×T

h(x)u3 · |∂t|(n+1)εv d(x, t)
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= 〈|∂t|nεu, |∂t|εv〉H −
∫

R×T

h(x)|∂t|nε(u3) · |∂t|εv d(x, t).

By Lemma 4.1 with p = 4 and a density argument (cf. Lemma 2.3) we see that the map
v 7→

∫

R×T
h(x)|∂t|nε(u3) · |∂t|εv d(x, t) extends to a bounded linear functional on H . Hence there

exists w ∈ H with

〈w, v〉H =

∫

R×T

h(x)|∂t|nε(u3) · |∂t|εv d(x, t) = 〈|∂t|nεu, |∂t|εv〉H

for v ∈ H with |∂t|(n+1)εv ∈ H . Again by density we get |∂t|(n+1)εu = w. �

In order to proceed we need the following little result on the mapping properties of Fourier
multiplier operators.

Lemma 4.3. Let Mv = F−1[mkv̂k] be a Fourier multiplier with symbol |mk| . |k|σ of polyno-
mial growth and let u be a function with |∂t|su ∈ H for all s ∈ R. Then |∂t|sMu ∈ H for all
s ∈ R. The same holds for H replaced by Lp(R× T) with p ∈ [1,∞] if we require û0 = 0.

Proof. In the Hilbert space setting we have

‖|∂t|sMu‖H ≤ (sup
k∈R

|mk||ωk|−σ)
∥

∥|∂t|s+σu
∥

∥

H
<∞

In the Lp(R× T) case, the series µ(t) =
∑

k∈Z\{0}mk|ωk|−σ−1ek(t) converges in L1(T). Hence

‖|∂t|sMu‖p =
∥

∥µ ∗ |∂t|s+σ+1u
∥

∥

p
≤ ‖µ‖1

∥

∥|∂t|s+σ+1u
∥

∥

p
<∞. �

Note that Lemma 4.3 applies to the multipliers N∗,G(x)∗ and by (A5) also to (N∗)−1.

Continuing our regularity analysis we show that u and its derivatives lie in L2 ∩L∞. This also
shows that u satisfies (14) strongly.

Proposition 4.4. Let u ∈ H be a critical point of J . Then |∂t|su ∈ W 2,p(R× T) for all s ∈ R

and p ∈ [2,∞], and it satisfies the equation

−uxx − V (x)∂2t u+ h(x)∂2t
(

N ∗ u3
)

= 0.(18)

If (R) holds, we moreover have |∂t|su ∈ W 2+l,2(R× T) ∩ C2+l
b (R× T).

Proof. We remark that equation (18) formally follows by applying −∂2tN∗ to (14).

Part 1: We first show |∂t|su ∈ Lp(R × T). Because of boundedness of the embedding H →֒
L2(R× T) and interpolation, it suffices to give the result for p = ∞. Similarly as in the proof
of Lemma 2.4 we calculate

‖|∂t|su‖∞ . ‖|ωk|sFξ,k[u]‖1 ≤
∥

∥

∥

∥

∥

|ωk|−1/2

√

ω2k2Fk[N ]

ξ2 + ω2k2

∥

∥

∥

∥

∥

2

·
∥

∥

∥

∥

∥

|ωk|s+1/2

√

ξ2 + ω2k2

ω2k2Fk[N ]
Fξ,k[u]

∥

∥

∥

∥

∥

2

where the first term is finite since 0 ≤ Fk[N ] ≤ |k|−α, α > 1, and the second term is equivalent

to
∥

∥

∥
|∂t|s+1/2u

∥

∥

∥

H
and thus finite by Lemma 4.2.
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Part 2: Next we show |∂t|sux ∈ L2(R× T):

‖|∂t|sux‖22 =
∑

k∈R

∫

R

|ωk|2s|û′k|2 dx

.
∑

k∈R

∫

R

|ωk|2s+2−α

ω2k2Fk[N ]
|û′k|2 dx ≤

∥

∥

∥
|∂t|s+1−α/2u

∥

∥

∥

2

H
<∞.

Now let v ∈ H with |∂t|s+2N ∗ v ∈ H . As N is even by (A5), we have

0 = J ′(u)[|∂t|s+2N ∗ v]

=
∑

k∈R

|ωk|s
∫

R

û′kv̂
′
k + ω2k2Vk(x)ûkv̂k dx−

∫

R×T

h(x)u3 · |∂t|s+2N ∗ v d(x, t)

=

∫

R×T

|∂t|sux · vx d(x, t) +
∫

R×T

|∂t|2+s(V (x)u− h(x)N ∗ u3
)

· v d(x, t).

Since v was arbitrary, by density it follows that

|∂t|suxx = |∂t|2+s(V (x)u− h(x)PR[N ∗ u3]
)

(19)

holds. The term on the right-hand side lies in Lp(R× T) by Lemmas 4.1 and 4.3 and the first
part of the proof. Thus, |∂t|suxx ∈ Lp(R× T) and |∂t|su ∈ W 2,p(R× T).

Part 3: Assume (R), i.e. G ∈ C l
b(R;M(T)), h ∈ C l

b(R). First, we have |∂t|su ∈ Cb(R × T) by
Part 1 and Sobolev’s embedding. Continuity of G, h shows that the right-hand side of (19) is
continuous, so |∂t|suxx ∈ Cb(R× T) holds, and in particular |∂t|su ∈ C2

b (R× T).

For l > 0 we argue by induction over k = 0, . . . , l. We use that by (19) we have

∂k+2
x |∂t|su = ∂kx |∂t|s+2(V (x)u− h(x)N ∗ u3

)

where the right-hand side lies in L2(R×T) ∩Cb(R×T) by the product rule and the induction
hypothesis. This allows us to conclude |∂t|su ∈ W 2+k,2(R× T) ∩ Ck+2

b (R× T). �

Recall for the first type of nonlinearity (6.i) that the profile w of the electric field is given by
w = u. For the second type of nonlinearity (6.ii), by (15) the profile satisfies PR[w] = (N∗)−1u
where PS[w] solves a differential equation. Therefore we need to discuss next the regularity of w
for the second type of nonlinearity, which is done in the following analogue to Proposition 4.4.

Proposition 4.5. Let u ∈ H be a critical point of J . Define w = w1 + w2 where

w1 = PR[w] = (N∗)−1u, w2 = PS[w] = (−∂2x − V (x)∂2t )
−1(h(x)∂2t PS[u

3]).

Then w satisfies |∂t|sw ∈ W 2,p(R× T) for all s ∈ R, p ∈ [2,∞] and solves

(−∂2x − V (x)∂2t )w + h(x)∂2t (N ∗ w)3 = 0.

If (R) holds, we moreover have |∂t|sw ∈ W 2+l,2(R× T) ∩ C2+l
b (R× T).

Proof. First, by Lemma 4.3 and Proposition 4.4 we see that the function w1 := (N∗)−1u :=
∑

k∈R
1

Fk[N ]
ûk(x)ek(t) satisfies |∂t|sw1 ∈ W 2,p(R × T) for s ∈ R, p ∈ [2,∞], with additional

regularity if G, h fulfills (R). Applying (N∗)−1 to (18) we see that w1 solves

(−∂2x − V (x)∂2t )w1 + h(x)∂2t PR[u
3] = 0.
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Let us now turn our attention to w2 and define the space

H2 :=
{

v ∈ H1(R× T) : v̂k ≡ 0 for k ∈ R ∪ {0}
}

.

Since Vk(x) is bounded and positive, the Riesz representation theorem provides w2 ∈ H2 with
∫

R×T

∂xw2 · ∂xv + V (x)∂tw2 · ∂tv d(x, t) = −
∫

R×T

h(x)∂2t PS[u
3] · v d(x, t)(20)

for all v ∈ H2.

Similarly as for solutions u of J ′(u)[v] = 0 for v ∈ H , we obtain regularity for the solution w2

to (20). In contrast to J , where critical points satisfy a truly nonlinear equation, the right-
hand side of (20) is independent of w2 and its regularity properties have been established in
Proposition 4.4. Let us sketch the arguments:

As in Lemma 4.2 we find |∂t|sw2 ∈ H2 for s ∈ R. Using that the 0-th Fourier mode of
h(x)∂2t PS[u

3] vanishes, w2 satisfies

−∂2x|∂t|sw2 − V (x)∂2t |∂t|sw2 = −h(x)∂2t |∂t|sPS[u
3](21)

By the fractional Leibniz rule from Lemma 4.1, the regularity properties of u from Proposi-
tion 4.4 and the boundedness of the Fourier symbol of PS we find that the right-hand side of
(21) lies in L2. Therefore |∂t|sw2 ∈ W 2,2(R× T) ⊆ L∞(R× T) holds for s ∈ R and (21) shows
|∂t|sw2 ∈ W 2,p(R × T) for s ∈ R, p ∈ [2,∞]. The additional regularity when G, h satisfy (R)
can then be shown as in Proposition 4.4 by iteratively applying space-derivatives to (21). �

Lastly, we discuss the regularity of the corresponding electromagnetic fields.

Proof of Theorem 1.3 for slab geometries. Let u be a nontrivial critical point of J . If the non-
linearity is given by N(w) = N ∗ w3 then we set w := u. If otherwise N(w) = (N ∗ w)3 then
let w be from Proposition 4.5. Then we define W := ∂−1

t w and reconstruct the electromagnetic
fields by

E(x, t) = w(x, t− 1
c
z) ·





0
1
0



, B(x, t) = −





1
c
w(x, t− 1

c
z)

0
Wx(x, t− 1

c
z)





D(x, t) = ǫ0(w + G ∗ w + h(x)N(w)) ·





0
1
0



, H(x, t) = 1
µ0

B(x, t).

Due to Proposition 4.4 and Proposition 4.5 we have the inclusions

∂nt E ∈ W 2,p(Ω;R3), ∂nt B, ∂
n
t H ∈ W 1,p(Ω;R3), ∂nt D ∈ Lp(Ω;R3),

and assuming (R) we moreover have

∂nt E ∈ C̃2+l
b (Ω;R3), ∂nt B, ∂

n
t H ∈ C̃1+l

b (Ω;R3), ∂nt D ∈ C̃ l
b(Ω;R

3)

for any domain Ω = R × [y, y + 1] × [z, z + 1] × [t, t + 1] and all n ∈ N, p ∈ [2,∞] with norm
bounds independent of y, z, t. By direct calculation one checks that the fields E,D,B,H solve
Maxwell’s equations (1), (2). �
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Proof of Remark 1.5. To show that there exist infinitely many solutions, we search for breather
solutions with time period T

n
instead of T . If we define the corresponding time-domain Tn :=

R/T
n
Z

then the k-th Fourier coefficient of a T
n
-periodic function f , when understood as a T-

periodic function, satisfies Fk[f : Tn → R] = Fnk[f : T → R]. Therefore, by the above argu-
ments there exists a T

n
-periodic breather solution (En,Dn,Bn,Hn) to (1), (2) with minimal pe-

riod Tn > 0 for all such n ∈ N where R∩nZ 6= ∅. By assumption, the set {n ∈ N : R ∩ nZ 6= ∅}
is infinite. Since Tn is a divisor of T

n
the minimal period Tn goes to 0 for n → ∞. Hence

infinitely many among the breather solutions (En,Dn,Bn,Hn) must be mutually distinct. �

5. Modifications for the cylindrical geometry

In this section we discuss the cylindrical problem, that is, we consider equation (8.2) instead
of (8.1). The only difference between the two problems is in the spatial differential operator,
where we now work with −∂2r − 1

r
∂r+

1
r2

on the domain r ∈ [0,∞) instead of −∂2x for x ∈ R. The
differential operator −∂2r − 1

r
∂r is the 2d Laplacian for radially symmetric functions, and 1

r2
is an

additional positive term. Hence it is natural to equip the domain [0,∞) with the measure rdr,
and to identify functions on it with radially symmetric functions of the variables (x, y) ∈ R2

via r =
√

x2 + y2. We use the subscript “rad” to denote spaces of functions that are radially
symmetric in (x, y). Since the term

∫∞

0
u2

r2
rdr cannot be controlled by the H1

rad-Sobolev norm
of u (recall that Hardy’s inequality fails in two dimensions) we need to add this term in the
form domain of the differential operator.

We will discuss how the arguments from Sections 2 to 4 have to be adapted to treat the
cylindrical problem. We use the same structure as in these sections. In order to not repeat the
previous chapters, we discuss in detail only results that require new techniques to adapt them
to the cylindrical geometry and roughly sketch the other results.

5.1. Modifications for Sections 2 and 3. In analogy to Definitions 2.1 and 2.2, we define
the functional of interest J̃ and its domain H̃ (replacing J and H).

Definition 5.1. We define the space

H̃ :=
{

u ∈ L2([0,∞)× T; rd(r, t)) : ûk = 0 for k ∈ Zeven ∪S, ‖u‖2H̃ := 〈〈u, u〉〉H̃ <∞
}

with the two equivalent inner products

〈〈u, v〉〉H̃ :=
∑

k∈R

1

ω2k2Fk[N ]

∫ ∞

0

(

û′kv̂
′
k +

(

1
r2

+ ω2k2
)

ûkv̂k
)

rdr,

〈u, v〉H̃ :=
∑

k∈R

1

ω2k2Fk[N ]

∫ ∞

0

(

û′kv̂
′
k +

(

1
r2

+ ω2k2Ṽk(r)
)

ûkv̂k
)

rdr

where Ṽk(r) :=
1
c2
− 1− Fk[G(r)]. On H̃, we define the functional

J̃(u) := 1
2
〈u, u〉H̃ − 1

4

∫

[0,∞)×T

h(x)u4 rd(r, t) for u ∈ H̃

so that its critical points u ∈ H̃ satisfy

J̃ ′(u)[v] = 〈u, v〉H̃ −
∫

[0,∞)×T

h(x)u3v rd(r, t) = 0 for v ∈ H̃
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As a first step, we discuss the embedding properties of H̃ .

Lemma 5.2. For any p ∈ (2, p⋆) with p⋆ = 6
3−α

(p⋆ = ∞ if α ≥ 3), the embedding H̃ →֒
Lp([0,∞)× T; rd(r, t)) is compact. Moreover, H̃ →֒ L2([0,∞)× T; rd(r, t)) is continuous and
H̃ →֒ L2

loc([0,∞)× T; rd(r, t)) is compact.

Proof. We interpret a function u : [0,∞)× T → R as a function of the three variables (x, y, t)

which is radially symmetric in (x, y) via r =
√

x2 + y2. Let σρ be the surface measure of the
sphere Sρ ⊆ R2 of radius ρ centered at 0, normalized such that σρ(Sρ) = 1, and continued by 0
to a Borel measure on R2. It satisfies

F−1
(x,y)(σρ) =

1
2π
J0(rρ)

where J0 is the Bessel function of first kind. Using |J0(s)| . s−θ for θ ∈ [0, 1
2
] (cf. [13]) we

obtain
∥

∥rθu
∥

∥

L∞(R2×T)
.

∥

∥

∥
|ξ|−θFξ,k[u]

∥

∥

∥

L1(R2×Z)
,

where we used that Fξ,k[u] is radially symmetric in ξ. Note also that we have ‖u‖L2(R2×T) =

‖Fξ,k[u]‖L2(R2×Z). This allows us to use the Riesz-Thorin interpolation theorem (cf. [16]) and
get (with d# denoting the counting measure) that the map

T :

{

Lp′

rad(R
2 × Z; |ξ|−2θdξ ⊗ d#) → Lp

rad(R
2 × T; r−2θd(x, t)),

v 7→ rθFξ,k(|ξ|−θv)

is bounded for all p ∈ [2,∞]. To see this note that with v = |ξ|−θFξ,k[u] we have

‖v‖Lp′(R2×Z;|ξ|−2θdξ⊗d#) = ‖Fξ,k[u]|ξ|−θ0‖Lp′(R2×Z;dξ⊗d#)

‖Tv‖Lp(R2×T;r−2θd(x,t)) = ‖rθ0u‖Lp(R2×T;d(x,t))

where θ0 = θ (p−2)
p

ranges through [0, 1
2
− 1

p
] as θ runs through [0, 1

2
]. Thus we have

∥

∥rθ0u
∥

∥

Lp(R2×T)
.

∥

∥

∥
|ξ|−θ0Fξ,k[u]

∥

∥

∥

Lp′(R2×R)

≤
∥

∥

∥

∥

∥

|ξ|−θ0

√

ω2k2Fk[N ]

|ξ|2 + ω2k2

∥

∥

∥

∥

∥

Lr(R2×R)

∥

∥

∥

∥

∥

∥

√

|ξ|2 + ω2k2

ω2k2Fk[N ]
Fξ,k[u]

∥

∥

∥

∥

∥

∥

L2(R2×R)

where 1
r
= 1

2
− 1

p
< α

6
. By the choice of p⋆ and assumption (A5), the Lr-norm is finite provided

θ0 is chosen sufficiently small, and the L2-norm can be estimated against ‖u‖H̃ .

For the particular choice θ0 = 0, this shows that the embedding H̃ →֒ Lp
rad(R

2×T) is continuous.
Moreover, we can argue similarly as in the proof of Lemma 2.4 to verify that the local embedding
H̃ →֒ Lp

rad,loc(R
2 × T) is compact.

It remains to show that H̃ →֒ Lp
rad(R

2 × T) is compact for p 6= 2. For R > 0 consider the
compact map ER : H̃ → Lp

rad(R
2 × T), u 7→ u1BR(0)×T. Using the above inequality we have

‖ERu− u‖p ≤
∥

∥

∥

(

r
R

)θ0u
∥

∥

∥

p
. R−θ0‖u‖H̃
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so by choosing any admissible θ0 > 0 and taking the limit R → ∞ we see that the embedding
I : H̃ → Lp

rad(R
2 × T) is compact as the uniform limit of a sequence of compact operators. �

Notice that, unlike in the slab setting (cf. Lemma 2.4), the embedding of Lemma 5.2 is compact
for p > 2. This is why we do not require additional assumptions (A6a) or (A6b) in the cylindrical
setting. One can then show existence of ground states similar to the “compact” case (A6a) of
Section 3. The only difference is that existence of a convergent subsequence of h(r)u3n in
L
4/3
rad(R

2 × T) is guaranteed by the compact embedding instead of decay properties of h.

5.2. Modifications for Section 4. In the following, we show in Propositions 5.3 and 5.4 two
regularity results that are the cylindrical counterparts to Propositions 4.4 and 4.5.

Here, arguments will get more difficult since the cylindrical geometry is effectively 2-dimensional
in space (compared to 1d for the slab problem). For some arguments it will be advantageous
to view the 1

r2
not as an additional order 0 term, but as part of the differential operator. From

[4] we use the identity

∂2r +
1
r
∂r − 1

r2
= 1

r2
∂rr

3∂r
1
r
,(22)

which means that up to the multiplicative factors r, 1
r

we are dealing with 1
r3
∂rr

3∂r, which is
the Laplacian of a radially symmetric function in 4 dimensions.

Similar to Proposition 4.4 we show that u and its derivatives lie in L2 ∩ L∞.

Proposition 5.3. Let u ∈ H̃ be a critical point of J̃ . Then the terms

max{r, 1}|∂t|s(ur ), max{r, 1}|∂t|s∂r(ur ), r|∂t|s∂2r (ur )
lie in Lp([0,∞)× T; rd(r, t)) for all s ∈ R and p ∈ [2,∞], and u solves pointwise

(−∂2r − 1
r
∂r +

1
r2

− V (x)∂2t )u+ h(x)∂2t (N ∗ u3) = 0.

If (R) holds, then the terms

max{r, 1}|∂t|s∂nr (ur ) for 0 ≤ n ≤ l + 1 as well as r|∂t|s∂l+2
r (u

r
)

lie in L2([0,∞) × T; rd(r, t)) ∩ Cb([0,∞) × T). Moreover, the second term vanishes at r = 0,
and the same holds for the first term when n is odd.

Proof. Part 1: First, following the proof of Lemma 4.2 we obtain |∂t|su ∈ H̃ for all s ∈ R.

Next, for p ∈ [2,∞) we calculate

‖|∂t|su‖p . ‖|ωk|sFξ,k‖Lp′ (R2×R)

≤
∥

∥

∥

∥

∥

|ωk|−1

√

ω2k2Fk[N ]

|ξ|2 + ω2k2

∥

∥

∥

∥

∥

Lr(R2×R)

∥

∥

∥

∥

∥

∥

|ωk|s+1

√

|ξ|2 + ω2k2

ω2k2Fk[N ]
Fξ,k[u]

∥

∥

∥

∥

∥

∥

L2(R2×R)

.
∥

∥|∂t|s+1u
∥

∥

H̃
.

Here 1− 1
p
= 1

p′
= 1

r
+ 1

2
, and the Lr-norm is finite since r > 2 and therefore

∑

k∈R

|ωk|−r

∫

R2

(

ω2k2Fk[N ]

|ξ|2 + ω2k2

)
r
2

dξ
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=

∫

R2

(

1

|ξ|2 + 1

)r/2

dξ ·
∑

k∈R

|ωk|2−rFk[N ]
r
2 .

∑

k∈R

|k|2− 7

4
r <∞.

Part 2: Arguing as in part 2 of the proof of Proposition 4.4 we have that |∂t|sur, 1r |∂t|
su ∈

L2([0,∞)× T; rd(r, t)) for s ∈ R and

|∂t|surr + 1
r
|∂t|sur − 1

r2
|∂t|su = |∂t|s+2(V (r)u− h(r)PR[N ∗ u3]

)

(23)

holds pointwise. From now on arguments differ depending on if r is large or small, and we
discuss these cases in part 3 and part 4, respectively.

Part 3a: Let r > R1 for fixed R1 > 0. Then part 1 combined with (23) shows that ∆r|∂t|su :=
(∂2r +

1
r
∂r)|∂t|su ∈ Lp([R1,∞)×T; rd(r, t)) for p ∈ [2,∞). Now choose a cutoff ψ1 ∈ C∞([0,∞))

with suppψ1 ⊆ (R1,∞) and ψ1 ≡ 1 on [R2,∞) for R2 > R1. Then, interpreting v1 := ψ1(r)u

as a function of the three variables (x, y, t) via r =
√

x2 + y2 and continuing by zero, we have
|∂t|sv1 ∈ Lp

rad(R
2 × T) and

∆(x,y)|∂t|sv1 = ∆rψ1 · |∂t|su+ 2∂rψ1 · ∂r|∂t|su+ ψ1 ·∆r|∂t|su ∈ L2(R2 × T).

This shows |∂t|sv1 ∈ H2
rad(R

2 × T), and by Sobolev’s embedding we in particular have |∂t|su ∈
L∞([R2,∞)× T), |∂t|sur ∈ L6([R2,∞)× T; rd(r, t)).

Similar to above, but now with a smooth cutoff ψ2 such that suppψ2 ⊆ (R2,∞), ψ2 ≡ 1 on
[R3,∞) for R3 > R2, we see that v2 := ψ2(r)u satisfies ∆(x,y)|∂t|sv2 ∈ L6

rad(R
2×T) where again

(23) was used. Thus |∂t|sv2 ∈ W 2,6
rad(R

2 × T) by Lp-boundedness of the Riesz transform, cf.
[14, Corollary 5.2.8]. By Sobolev’s embedding we have ∂r|∂t|su ∈ L∞([R3,∞)× T), and then
∆r|∂t|su ∈ L∞([R3,∞)× T) by (23). So far we have shown

|∂t|su, |∂t|sur, |∂t|surr ∈ L2([R3,∞)× T; rd(r, t)) ∩ L∞([R3,∞)× T).

This shows the first part of Proposition 5.3 for r > R3, where R3 > 0 can be chosen arbitrarily.

Part 3b: We assume (R), i.e. G, h ∈ C l
b, and still consider large r. From Part 3a we obtain

|∂t|su, |∂t|sur,∈ Cb([R,∞) × T) from the high Sobolev regularity and therefore also |∂t|surr ∈
Cb([R,∞)×T) by applying (23). Now |∂t|s∂nr u ∈ L2([R,∞)×T; rd(r, t))∩Cb([R,∞)×T) for 2 <
n ≤ l+2 can be shown iteratively by applying space-derivatives to (23) and using that all terms
except the highest order space-derivative term lie in L2([R,∞)× T; rd(r, t)) ∩ Cb([R,∞)× T)
by the induction hypothesis.

Part 4a: Let us now consider small r. We use the representation via the 4d Laplacian, i.e.
we consider U : R4 × T → R, U(X, t) = U(X1, X2, X3, X4, t) = 1

|X|u(|X|, t). Notice that the
L2-norms are equivalent, i.e.

∥

∥

∥

1
|X|f(|X|, t)

∥

∥

∥

L2(BR×T)
=

√
2π‖f‖L2([0,R]×T;rd(r,t))

holds with BR ⊆ R
4 denoting the ball of radius R centered at 0. Multiplying (23) by 1

r
, setting

r = |X|, and recalling (22) we have

∆X |∂t|sU = V (r)|∂t|s+2U − h(r)
r
|∂t|s+2PR[N ∗ u3].(24)

By part 1 the right-hand side of (24) lies in L2(R4×T). Therefore |∂t|sU ∈ H2(R4×T), which
by Sobolev’s embeddings shows |∂t|s∂rU ∈ L10/3(R4×T), |∂t|sU ∈ L10(R4×T). Now let R1 > 0
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and ψ1 ∈ C∞
c ([0, R1)) be a smooth cutoff function with ψ1 ≡ 1 on [0, R2] for some 0 < R2 < R1

and set v1 := ψ1(|X|)U . Then, since

∆X |∂t|sv1 = ∆Xψ1 · |∂t|sU + ∂rψ1 · ∂r|∂t|sU + ψ1 ·∆X |∂t|sU
and since we may write (24) as

∆X |∂t|sU = V (r)|∂t|s+2U − r2h(r)|∂t|s+2PR[N ∗ U3],(25)

we have ∆X |∂t|sv1 ∈ L10/3(R4 × T) which by Lp-boundedness of the Riesz transform im-
plies |∂t|sv1 ∈ W 2,10/3(R4 × T). From Sobolev’s embedding we have |∂t|sU ∈ L∞(BR2

× T),
∇X |∂t|sU ∈ L10(BR2

× T). Repeating this argument with 0 < R3 < R2 and a cutoff function
ψ2 ∈ C∞

c ([0, R2)), ψj ≡ 1 on [0, R3] shows ∇X |∂t|sU ∈ L∞(BR3
× T). Using (25), regularity of

the terms in the claim of Proposition 5.3 follows since

|∂t|s ur = |∂t|sU ∈ L∞, |∂t|s∂r(ur ) = X
r
· ∇X |∂t|sU ∈ L∞,

r|∂t|s∂2r (ur ) = r∆X |∂t|sU − 3X
r
· ∇X |∂t|sU ∈ L∞

The Lp-estimates follow from these since BR3
× T has finite volume.

Part 4b: Assume (R), and again consider small r. First, |∂t|sU,∇X |∂t|sU are continuous by
Sobolev’s embedding, and continuity of ∆X |∂t|sU follows from this by (25). Existence and
continuity of higher derivatives

∇n
X∆X |∂t|sU, ∇n+1

X |∂t|sU, ∇n
X |∂t|sU

for 0 < n ≤ l can again be shown using induction and repeatedly applying ∇X to (25). This
implies continuity of all terms except the highest order one in Proposition 5.3 since |∂t|s∂nr (ur ) =
(∇n

X |∂t|sU)[Xr , . . . , Xr ]. Moreover, odd r-derivatives of u
r

vanish at r = 0 since U is radially
symmetric. For the highest order term we have

(∇l
X∆X |∂t|sU)[Xr , . . . , Xr ] = |∂t|s∂l+2

r (u
r
) + |∂t|s∂lr(3r∂r(ur ))

which shows that |∂t|s∂l+2
r (u

r
) is continuous away from 0. To see the behaviour of the highest

order term near r = 0 we use the differentiability properties of U and a Taylor expansion of
|∂t|s(ur ) about r = 0 as follows. Let |∂t|s(ur ) = Tl+1(|∂t|s(ur ); 0) + f be the Taylor expansion of
|∂t|s(ur ) of degree l + 1 about r = 0 with remainder f . Then we have

|∂t|s∂lr(3r∂r(ur )) = ∂lr
(

3
r
∂r
[

Tl+1(|∂t|s ur ; 0)
])

+ ∂lr
(

3
r
∂rf

)

=
3(−1)l

l!

|∂t|s(ur )r(0)
rl+1

+ o(1
r
) = o(1

r
)

as r → 0 since |∂t|s(ur )r(0) = 0 by radial symmetry. This shows that r|∂t|s∂l+2
r (u

r
) → 0 as

r → 0. �

Next, in Proposition 5.4, similar to Proposition 4.5 we discuss the second nonlinearity (6.ii).

Proposition 5.4. Let u ∈ H̃ be a critical point of J̃ and let the nonlinearity be given by
N(w) = N ∗ w3. Define w = w1 + w2 where

w1 = PR[w] = (N∗)−1u, w2 = PS[w] = (−∂2r − 1
r
∂r +

1
r2

− V (x)∂2t )
−1(h(x)∂2t PS[u

3])

Then the functions

max{r, 1}|∂t|s wr , max{r, 1}|∂t|s∂r(wr ), r|∂t|s∂2r (wr )
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lie in Lp([0,∞)× T; rd(r, t)) for all s ∈ R and p ∈ [2,∞], and w solves

(−∂2r − 1
r
∂r +

1
r2

− V (x)∂2t )w + h(x)∂2t (N ∗ w)3 = 0.

If (R) holds, then the terms

max{r, 1}|∂t|s∂nr (wr ) for 0 ≤ n ≤ l + 1 as well as r|∂t|s∂l+2
r (w

r
)

lie in L2([0,∞) × T; rd(r, t)) ∩ Cb([0,∞) × T). Moreover, the second term vanishes at r = 0,
and the same holds for the first term when n is odd.

Proof. We follow Proposition 4.5, and define w2 by

w2 ∈ H̃2 :=
{

v ∈ H1([0,∞)× T; rd(r, t)) : 1
r
v ∈ L2([0,∞)× T; rd(r, t)), v̂k ≡ 0 for k ∈ R ∪ {0}

}

and
∫

[0,∞)×T

(

∂rw2 · ∂rv + 1
r2
w2 · v + V (r)∂tw2 · ∂tv

)

rd(r, t) = −
∫

[0,∞)×T

(

h(r)∂2t PS[u
3] · v

)

rd(r, t)

for all v ∈ H̃2. Regularity of w1 follows from Proposition 5.3, and the arguments therein can
also be used to show regularity of w2. �

As the last part of this chapter, we discuss regularity of the electromagnetic wave profiles.

Proof of Theorem 1.3 for cylindrical geometries. Part 1: Let u ∈ H̃ be a nontrivial critical
point of J̃ . For the nonlinearity N(w) = N ∗w3 set w := u, else let w be from Proposition 5.4.
Define W := ∂−1

t w and the electromagnetic fields by

D(x, t) = ǫ0(w + G ∗ w + h(r)N(w)) ·





−y/r
x/r
0



, E(x, t) = w(r, t− 1
c
z) ·





−y/r
x/r
0



,

B(x, t) = −1
c
w ·





x/r
y/r
0



− (1
r
W +Wr) ·





0
0
1



, H(x, t) = 1
µ0
B(x, t)

By a straightforward calculation one sees that E,D,B,H solve Maxwell’s equations (1), (2), so
it remains to show their regularity. For simplicity we only consider E and only discuss spatial
derivatives. Abbreviating p(x) := (−y, x, 0), denoting the Euclidean scalar product in R3 by
〈 · , · 〉 and the space derivative by Dx, we have

E =
w

r
p

= r
w

r

p

r
,

DxE[h] =
w

r
Dxp[h] +

1
r
∂r

(w

r

)

〈

x, h
〉

p

=
w

r
Dxp[h] + r∂r

(w

r

)

〈x

r
, h

〉p

r

D2
x
E[h1, h2] =

1
r
∂r

(w

r

)

[〈

x, h1
〉

Dxp[h2] +
〈

x, h2
〉

Dxp[h1] +
〈

h1, h2
〉

p
]

+
(

1
r
∂r
)2
(w

r

)

〈

x, h1
〉〈

x, h2
〉

p,
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= ∂r

(w

r

)[

〈x

r
, h1

〉

Dxp[h2] +
〈x

r
, h2

〉

Dxp[h1] +
〈

h1, h2
〉p

r

]

+
[

r∂2r

(w

r

)

− ∂r

(w

r

)]

〈x

r
, h1

〉〈x

r
, h2

〉p

r
,

so Propositions 5.3 and 5.4 show that these terms lie in Lp for p ∈ [2,∞].

Part 2: Let us now assume (R). We need to show that higher order derivatives exist, are
continuous and square-integrable. Away from r = 0, this is clear by Propositions 5.3 and 5.4,
so it remains to show continuity of derivatives in r = 0. First, by induction one can show that
for 0 ≤ n ≤ l + 2 the derivative Dn

x
E can be written as a sum

Dn
x
E =

n
∑

j=⌈n−1

2
⌉
(1
r
∂r)

j
(w

r

)

· pn,j,

where pn,j(x) : (R3)n → R3 is symmetric, n-multilinear, and its coefficients are homogeneous
polynomials of degree 2j+1−n in x. We use Taylor approximation and write w

r
= Tn−1(

w
r
; 0)+f

with Taylor polynomial Tn−1(
w
r
; 0) and remainder f .

Let us next consider summands with j < n. Recall that all odd Taylor coefficients are zero, so
qn,j := (1

r
∂r)

jTn−1(
w
r
; 0) is an even polynomial. In addition, we can estimate the remainder via

(1
r
∂r)

jf = o(rn−1−2j) as r → 0. Thus

(1
r
∂r)

j
(w

r

)

· pn,j = (qn,j(r) + o(rn−1−2j))pn,j → qn,j(0)pn,j(0)

as r → 0. Now let j = n. Similar to the above arguments, one can show
[

(1
r
∂r)

n − 1

rn
∂nr

]

(w

r

)

= qn,n(r) + o(r−n−1)

as r → 0 for some polynomial qn,n. Thus

Dn
x
E =

1

rn
∂nr (

w
r
) · pn,n +

n
∑

j=⌈n−1

2
⌉
qn,j(r)pn,j(x) + o(1) →

n
∑

j=⌈n−1

2
⌉
qn,j(0)pn,j(0)

as r → 0 by Propositions 5.3 and 5.4. Since the argument for existence of infinitely many
solutions is the same as for slab geometries at the end of Section 4, this completes the proof.
Observe that pn,j(0) = 0 for j 6= n+1

2
, so in particular all even derivatives of E vanish at 0. �
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