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EXISTENCE OF MONOSTABLE FRONTS FOR A KPP

INFINITE-DIFFERENCE NUMERICAL SCHEME

LOUIS GARÉNAUX AND HERMEN JAN HUPKES

Abstract. We study the existence of traveling wave solutions for a numerical counterpart of
the KPP equation. We obtain the existence of monostable fronts for all super-critical speeds in
the regime where the spatial step size is small. The key strategy is to transfer the invertibility of
certain linear operators related to the front solutions from the continuous setting to the discrete
case we are interested in. We rely on resolvent bounds which are uniform with respect to the
step size, a procedure which is also known as spectral convergence. The approach is also able
to handle infinite range discretizations with geometrically decaying coefficients that are allowed
to have both signs, which prevents the use of the comparison principle.

Keywords: finite difference numerical scheme, monostable front, infinite range diffusion,
spectral convergence, far-field decomposition, singular limit.

AMS Subject Classifications (MSC 2020): 39A14, 39A12, 39A70, 47A10, 47N40,
47A12.

1. Introduction

1.1. Problem and statements. Our primary goal is to construct traveling front solutions to
the equation

(1.1) 9ujptq “
uj`1 ´ 2uj ` uj´1

h2
` gpujq, t ą 0, j P Z.

Equation (1.1) appears as a space discretization of a scalar reaction-diffusion equation: we
restrict to small step size h ą 0. More precisely, we focus on monostable equations, by which
we mean in this work that g : R Ñ R satisfies for an integer K ě 2 the

Assumption 1. The function g P CK admits two consecutive zeros u “ 0 and u “ 1 and is
concave on r0, 1s. It is non-degenerate, in the sense that g1p1q ă 0 ă g1p0q.

The solution we are aiming at is a traveling heteroclinic connection between these two states,
meaning that we look for a solution

(1.2) ujptq “ φhpjh ´ ctq, t ą 0, j P Z,

defined by its speed c ą 0, and its profile φh P CK`1pR,Rq that satisfies

(1.3) lim
´8

φh “ 1, lim
`8

φh “ 0.

Theorem 2. Assume that Assumption 1 holds, and let c ą 2
a

g1p0q. Then there exists h0 ą 0
such that for all h P p0, h0q, equation (1.1) admits a solution of the form (1.2)-(1.3).

The previous statement partially recovers a result actually known since [ZHH93]. Their work
sparked a number of follow-up studies focusing on the existence, monotonicity, uniqueness and
stability of monostable front solutions to semi-discrete difference equations [CC04, MZ05]. In
addition, various extensions have been considered involving infinite difference schemes [MWZ06],
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time dependent coefficients [DJ24], non-linear porous-media type diffusions [CG02] and interac-
tion terms gpuq featuring time-delays and spatial convolutions [MZ05]. All these results make
critical use of the comparison principle satisfied by (1.1).

The techniques we use in the present paper are fundamentally different in nature and are
based on the so-called ‘spectral convergence’ approach developed in [BCC03]. Studying bistable
equations such as (1.1) with gpuq “ up1 ´ uqpu ´ aq and a P p0, 1q, they managed to transfer
the existence result of the continuous problem (h Ñ 0) to the discrete problem ph ą 0q. This
motivated several extensions [HVV22b, HJ24], showcasing that results concerning the existence
and stability of waves and the asymptotic description of their properties can be obtained for
a wide range of bistable settings. In particular, infinite difference schemes [SH21], equations
posed on trees [HJ24], reaction-diffusion systems of FitzHugh-Nagumo type [SH19] and time
dependent non-uniform discretization grids [HVV23] were studied.

We see the above theorem as an illustration that the approach of the second branch of lit-
erature can be applied to the monostable problems studied in the first branch. As a direct
consequence, we are able to deal with a larger class of discretization schemes in the monostable
setting. In particular, let us consider an infinite difference approximation of the second order
derivative:

(1.4) 9ujptq “
`8
ÿ

k“1

ak
uj`k ´ 2uj ` uj´k

k2h2
` gpujq, t ą 0, j P Z,

in which the sequence pakqkě1 Ă R satisfies the

Assumption 3. The sequence is geometrically decaying: there exist C ą 0 and ρ P p0, 1q
such that for all k ě 1, |ak| ď Cρk. The sum of the coefficients is positive, and normalized as
ř`8

k“1
ak “ 1.

Observe that equation (1.1) corresponds to the choice a1 “ 1 and ak “ 0 for all k ě 2.
However, our techniques do not require the hypothesis that ak ě 0 for all k ě 1, which is
necessary for the comparison principle to hold. In particular, our main result here goes beyond
previous infinite-range results [MWZ06] that were established using the comparison principle.

Theorem 4. Assume that both assumptions 1 and 3 hold, and let c ą 2
a

g1p0q. Then there
exists h0 ą 0 such that for all h P p0, h0q, equation (1.4) admits a solution of the form (1.2)-(1.3).

We remark that discrete convolution kernels with negative coefficients arise naturally in appli-
cations, such as particle chains with visco-elastic interactions, see [VVV09, Eq. (11)]. Further-
more, the use of non-positive ak allows one to consider numerical differentiation schemes that
have higher orders of consistency. For example, pakqkě1 “ p´1

3
, 4
3
, 0, 0, . . . q satisfies Assumption

3, and corresponds to the discrete diffusion operator

´uj`2 ` 16uj`1 ´ 30uj ` 16uj´1 ´ uj´2

12h2
» u2pjhq ` Oph4q,

which should be contrasted to the Oph2q-approximation made in (1.1). Another interesting
example is given by pakqkě1 “ p´1

2
, 3
2
, 0, 0, . . . q, since it corresponds to a convolution kernel

1

h2 p3
8
,´1

2
, 1
4
,´1

2
, 3
8
q that has a positive central coefficient 1

4h2 .

1.2. Obstacles and approach. The main idea of our proof is to rely on the corresponding
spatially continuous equation

(1.5) Btu “ Bxxu ` gpuq, t ą 0, x P R,

for which existence of traveling waves upt, xq “ φ0px´ctq satisfying (1.3) is well-known [KPP37,

Fis37] for all speeds c ě 2
a

g1p0q and under a slightly weaker version of assumption 1. We con-
struct a fix-point argument for the space-discretized equation, linearizing near an approximate
solution. When h is small and c ‰ 2

a

g1p0q, we are able to transfer the invertibility proper-
ties of the linear part from the space-continuous setting towards the space-discretized setting.

2



Throughout the paper we only consider the infinite-range setting of Theorem 4, but for the
remainder of our discussion here we will focus on the setting of Theorem 2.

As we will see, our search for discrete traveling front solutions replaces the time-derivative
Bt in (1.5) by the convection operator cBx, while the Laplacian Bxx is replaced by the discrete
version ∆kh that acts as

∆khv :“
1

k2h2

ˆ

vp¨ ` khq ´ 2v ` vp¨ ´ khq

˙

,

In particular, we can view the combination ∆kh ` cBx as an L2pRq-based operator with domain
H1pRq. In this setting, the limit h Ñ 0 is singular. To obtain the invertibility of the linear
operator in the discrete setting, we establish a h-uniform resolvent bound, by relying on the
L2-weak convergence of ∆khv towards v2.

In the present monostable setting, the approach initiated in [BCC03] for bistable waves does
not immediately carry over, and two main points have to be addressed.

˛ The bistable structure localizes solutions of the resolvent problem by preventing the bulk
of their energy from escaping to infinity as h Ñ 0. In the monostable setting, a similar
structure can be recovered using over-localizing weights. However, these introduce del-
icate novel terms when interacting with the shift operators, which need to be carefully
controlled. The geometric decay of the sequence pakqk is crucial to achieve this control;
see Proposition 15 below.

˛ The residual terms that appear when linearizing the profile equation close to an approx-
imate solution are not localized enough to use the aforementioned weights. We use a
tailor-made approximate solution to cancel the most critical residual terms, following
the so-called far-field approach in [AG23].

Our inspiration to introduce spatial weight functions stems from the continuous problem
(1.5), where such weights were used by Sattinger in [Sat76] to counteract the instability of the

equilibrium u “ 0. However, they are available for fast waves c ą 2
a

g1p0q only. For the slowest

wave c “ 2
a

g1p0q, no spectral gap can be recovered [FH19] since a branch point of the absolute
spectrum lies on the imaginary axis [SS00, FHSS22].

1.3. Future directions. We view this paper as a first proof of concept that the spectral con-
vergence method can be applied in monostable settings. As a consequence, it naturally opens
several follow up questions.

˛ The main obstacle towards understanding the slowest wave c “ 2
a

g1p0q is the possibility
for the mass to escape at `8, since exponential weights can no longer be used to stabilize
the spectrum. We believe that this can be resolved by a careful analysis of the asymptotic
behavior of solutions to the advance-delay differential equations underlying the resolvent
problems for h ą 0.

˛ Most efficient modern solvers for parabolic systems feature time-dependent numerical
schemes, where the density of grid points is increased in areas where the solution is steep.
Naturally, it is highly relevant to understand the impact that such adaptive schemes
have on the properties of the underlying solution. In the bistable case, the persistence of
traveling waves has been established in the series of papers [HVV22a, HVV22b, HVV23],
which rely heavily upon the spectral convergence approach.

˛ In the context of numerical analysis, it is of fundamental importance to study the be-
haviour of fully discretized schemes such as

un`1

j ´ unj

ht
“

un`1

j`1
´ 2un`1

j ` un`1

j´1

hx
2

` gpunj q,

which arises from (1.1) by applying the implicit Euler scheme to the temporal variable. In
particular, we are interested in the impact of such schemes on the existence, uniqueness

3



and stability of traveling fronts. Partial answers in several bistable settings have been
obtained in [HVV16, SH21], again using the spirit of the spectral convergence approach.

2. Notations

2.1. Spaces. In the following, we simply write Lp to denote the usual Lebesgue vector spaces
LppRq. When using other spatial domains than R, we will be more explicit.

2.2. Taylor remainders. For any j P N and f P CjpR,Rq, we abbreviate the Taylor expansion
at a in the direction b as

(2.1) Tj,f pa, bq :“ fpa ` bq ´
j´1
ÿ

k“0

f pkqpaq

k!
bk.

We can already use this notation to check that the numerical scheme we consider is consistent.

Lemma 5. Assume that f P BUC3pR,Rq, and denote

(2.2) ∆a,hf :“
`8
ÿ

k“1

ak
fp¨ ` khq ´ 2f ` fp¨ ´ khq

k2h2
.

Then the following statements hold.

(i) There exists a positive constant C such that for all h P p0, 1q,

‖∆a,hf ´ f2‖L8 ď Ch.

(ii) Assume furthermore that f has exponential behavior at infinity, in the sense that there
exist positive constants h0, C and κ such that for all x P R, all k ě 1 and all h P p0, h0q

sup
|s|ďkh

∣

∣

∣

∣

∣

f p3qpx ` sq

e´κx

∣

∣

∣

∣

∣

ď C1`kh.

Then there exist positive constants h̃0 and C such that for all h P p0, h̃0q,
∥

∥

∥

∥

∆a,hf ´ f2

e´κ¨

∥

∥

∥

∥

L8

ď Ch.

Proof. It is direct to check that

fp¨ ` khq ´ 2f ` fp¨ ´ khq

k2h2
“ f2 `

1

k2h2

ˆ

T3,f p¨, khq ` T3,f p¨,´khq

˙

.

Using the integral formulation of the Taylor remainder provides the bound |T3,f px,˘khq| ď
1

6
k3h3‖f3‖L8 for all x P R. This proves the first point. The second point is almost identical.

By taking h sufficiently small, we can enforce the geometric decay

∣

∣

∣

∣

ak
1

k2h2
T3,f p¨, khq

e´κ¨

∣

∣

∣

∣

ď kh|ak| sup
sPpx,x`khq

∣

∣

∣

∣

∣

f p3qpsq

e´κx

∣

∣

∣

∣

∣

ď C kh pρChqk,

which allows us to sum over k ě 1. �

2.3. Far field approach. To describe the behavior at infinity, we introduce a partition of unity.
Let 1´ and 1` be two smooth functions R Ñ R, that are constant outside of a bounded set:

1´pxq “

#

1 x ď ´1

0 x ě 1
, 1`pxq “ 1 ´ 1´pxq.
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Lemma 6. Let c ą 2
a

g1p0q. There exists positive constants κ0, δ, and w0 P L2pRq, such that
the wave profile φ0 for the continuous problem (1.5) can be decomposed as

φ0pxq “ 1´pxq ` w0pxq ` 1`pxqφ0p0q e´κ0x,

in which w0 satisfies the decay rates

‖x ÞÑ e´δxw0pxq‖W 2,8p´8,0q ` ‖x ÞÑ epκ0`δqxw0pxq‖W 2,8p0,`8q ă 8.

Proof. Since both lim˘8 φ0 are hyperbolic equilibria for the ODE

´cφ1 “ φ2 ` gpφq,

φ0 decays exponentially at ˘8, see [Sat76, §6]. We denote the spatial decay rate at `8 by
κ0. The claimed decomposition uniquely defines w0, and the bounds are obtained by choosing
δ small enough and exploiting the fact that κ0 is a simple spatial eigenvalue. �

2.4. Over-localized weights. To invert the linear operator, we will first need to remove the
essential spectrum at the origin. As is classical for monostable waves, we do so using exponential
weights.

Lemma 7. Let c ą 2
a

g1p0q and recall the constants δ and κ from Lemma 6. Then there exists

θ P pκ0, κ0 ` δ
2
q such that

(2.3) θ2 ´ cθ ` g1p0q ă 0,

and
c ´ 2θ ă 0.

Proof. The spatial decay rate κ0 is given by the smallest solution of the polynomial equation

κ20 ´ cκ0 ` g1p0q “ 0;

see again [Sat76, §6]. In particular, solutions to the inequality (2.3) are all larger than κ0.

Explicitely computing that κ0 :“
c
2

´
b

c2

4
´ 4g1p0q, we are able to choose θ sufficiently close to

κ0 in order to ensure that

θ ă min

ˆ

c

2
, κ0 `

δ

2

˙

,

which concludes the proof. �

We fix such a θ for the rest of the article, and as a first step we introduce the initial weight
function

(2.4) ω̃pxq “

$

’

&

’

%

1 x ď ´1

exp
`

´ θ
px`1q2

4

˘

x P p´1, 1q

expp´θxq x ě 1.

.

Although this expression already enjoys several convenient properties, it lacks smoothness. Thus,
we further refine it with the following statement.

Lemma 8. Let ε ą 0. There exists ω P C8pR, p0, 1sq such that ωpxq “ ω̃pxq when x R p´2, 2q,
and such that ‖ω ´ ω̃‖W 2,8pRq ď ε.

Proof. We set out to smoothen the function ω̃ on the interval r´2, 2s. First, we set a partition
of unity by choosing χ P C8pR, r0, 1sq in such a way that

χpxq “

#

1 when x P
`

´3

2
, 3
2

˘

,

0 when x R p´2, 2q.

Then, we approximate ω̃|r´2,2s using the density of smooth functions: for ε ą 0, there exist
̟ P C8pr´2, 2s,Rq such that

‖ω̃ ´ ̟‖W 2,8p´2,2q ď ε.
5



Finally, we define ω as the barycenter

ω “ χ̟ ` p1 ´ χqω̃.

It satisfies the claimed properties, and the proof is complete. �

For the remainder of the article, we choose ε, and write ω for the associated weight. We may
decrease ε and continue using the ω notation without explicitly stating the ε dependence.

2.5. Residual, linear operator and quadratic terms. Inserting the traveling wave ansatz
(1.2) into (1.4), we see that φh must satisfy

(2.5) ´cφ1 “ ∆a,hφ ` gpφq,

with ∆a,h defined in (2.2).
We start by prescribing the behavior of the profile at infinity, in the spirit of Lemma 6. In

particular, we introduce the function

φ8pxq “ 1´pxq ` w0 ` 1`pxqφ0p0q e´κhx,

in which the exponent κh ą 0 will be chosen later.
We further introduce the notation

Ahpφq :“ ∆a,h ` cBx ` g1pφq

to denote the linearization of (2.5) at an approximate solution φ.

Lemma 9. Consider a solution to (2.5) that can be written in the form

(2.6) φh “ φ8 ` ωv.

Then v satisfies
0 “ R ` Lhv ` Qpvq,

with

R :“ ω´1Ahp0qφ8 ` ω´1T2,gp0, φ8q,

Lhv :“ ω´1Ahpφ8qpωvq,

Qpvq :“ ω´1T2,gpφ8, ωvq.

Proof. We first rewrite (2.5) as

0 “ Ahp0qφ ` gpφq ´ g1p0qφ,

and insert the decomposition (2.6). We force the apparition of a Taylor remainder of order two,
and group together linear terms to arrive at

0 “ Ahp0qφ8 ` T2,gpφ8, ωvq `

ˆ

Ahp0q ` g1pφ8q ´ g1p0q

˙

ωv `

ˆ

gpφ8q ´ g1p0qφ8

˙

.

Artificially inserting a gp0q “ 0 inside the last pair of parentheses, we obtain another Taylor
remainder of order two. Dividing by ω concludes the proof. �

2.6. Choice of ansatz. A quick inspection of R reveals that its second term behaves as x ÞÑ
epθ´2κhqx when x Ñ `8. On the other hand, its first term (typically) behaves as x ÞÑ epθ´κhqx.1

With the intuition that κh will represent the spatial decay rate of φh and thus will get close
to κ0 in the h Ñ 0 limit, we see that the first term in R a priori has the potential to grow as
ξ Ñ 8, preventing the use of over-localizing weights. We choose κh so that this problematic
asymptotic term vanishes identically, by looking for zeros of the function

Gph, κq :“ g1p0q ´ cκ `
`8
ÿ

k“1

ak
e´κkh ´ 2 ` eκkh

k2h2
.

1This latter fact is easy to see when dealing with finite differences, e.g. for (1.1). We refer to the precise
computations that follow for the general case.
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Lemma 10. There exists h0 ą 0 and a map κ : p0, h0q Ñ R such that for any h P p0, h0q,
Gph, κphqq “ 0. For this choice of spatial exponential rate, we have

Ahp0qpx ÞÑ e´κphqxq “ 0.

Proof. Thanks to the geometric decay of the sequence ak, we can compute that

Ahp0qpe´κ¨qpxq “ e´κxGph, κq

holds for all x P R, establishing the final statement. We now focus on the definition of κphq.
Using Taylor expansions in h, we first notice that Gp0, κ0q “ 0. Writing fpxq “ e´pκ0`αqx and
applying Lemma 5–(i), we subsequently compute

Gph, κ0 ` αq “ Gph, κ0 ` αq ´ Gp0, κ0q,

“ ´ cα ´ κ20 `
`8
ÿ

k“1

ak
fpkhq ´ 2fp0q ` fp´khq

k2h2
,

“ p2κ0 ´ cqα ` Oph ` α2q.

Since BκGp0, κ0q “ 2κ0 ´ c ă 0, we may apply the implicit function theorem to construct the

claimed function h ÞÑ κphq. Incidentally, it expands as κphq “ κ0 ` h2 κ0
4

12pc´2κ0qp
ř

kě1
akk

2q `

Oph4q. �

Lemma 11. For any δ ą 0, there exists h0 ą 0 such that for all h P p0, h0q,

‖R‖L2XL8 ď δ.

Proof. Our starting goal is to show that R is exponentially localized. Restricting to x ě 1, we
see as stated previously that ωpxq´1T2,gp0, φ8pxqq “ Opepθ´2κphqqxq “ Ope´δxq. Continuing with
x ě 1, we turn to the infinite range linear term, and rely on Lemma 10 to express it as

ω´1Ahp0qφ8 “ ω´1Ahp0qpw0 ` 1´p1 ` e´κ¨qq.

Since w0 is constructed from the solution to an ODE that converges to a hyperbolic equilibrium,
it has exponential behavior at infinity, in the sense that

sup
|s|ďkh

∣

∣

∣

∣

∣

w
p3q
0

px ` sq

e´pκ0`δqx

∣

∣

∣

∣

∣

ď Cepκ0`δqkh.

We can obviously obtain a similar bound for p1 ` e´κ¨q1´, which allows us to apply Lemma
5–(ii) and conclude that for all x ě 1 we have

|ω´1Ahp0qφ8|pxq ď Ceθxe´pκ0`δqx ď Ce´ δ
2
x.

We use a similar approach when x ď ´1, and remark that R then simplifies to

R “ ∆a,hp1´ ` w0 ` 1`e
´κphq¨q ` cw1

0 ` T1,gp1, w0q.

The infinite range term is controlled using Lemma 5–(ii), while the other two terms have the
same exponential decay as w0.

In particular, we conclude that |R| ď e´η|x| for some η ą 0, ensuring that R belongs to
L2 X L8. To prove its smallness, we remark that R converges to 0 when h Ñ 0. Indeed, the
smoothness of φ8 allows us to take the limit h Ñ 0 in the expression of R, leading to

lim
hÑ0

R “ ω´1

ˆ

Ap0qφ0 ` T2,gp0, φ0q

˙

“ 0.

As a consequence, we can restrict to a sufficiently small value of h0 to obtain the claim. �
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2.7. Finite differences. In the following, we will use more finite difference operators. We
denote the upwind and downwind first order differences as

B`
khv :“

vp¨ ` khq ´ v

kh
, B´

khv :“
v ´ vp¨ ´ khq

kh
,

and their centered counterpart as

B0khv :“
vp¨ ` khq ´ vp¨ ´ khq

2kh
.

We combine them to define the infinite range transport term

B0a,hv :“
`8
ÿ

k“1

akB0khv.

Let us further define the mean operator M0
khv :“ vp¨`khq`vp¨´khq

2
together with its infinite range

counterpart

M0
a,hv :“

`8
ÿ

k“1

ak
vp¨ ` khq ` vp¨ ´ khq

2
.

We start by summarizing several long but useful elementary computations.

Lemma 12. Let f P BUC3pR,Rq and v P L2. Then the following statements hold for all
0 ă h ď 1.

(i) (unbalanced mean)

pB`
khfqvp¨ ` khq ` pB´

khfqvp¨ ´ khq “ 2f 1M0
khv

`

ˆ

T2,f p¨, khqvp¨ ` khq ´ T2,f p¨,´khqvp¨ ´ khq

˙

and the final term satisfies the remainder bound

(2.7)
1

kh
‖T2,f p¨, khqvp¨ ` khq ´ T2,f p¨,´khqvp¨ ´ khq‖

L2 ď kh‖f‖W 2,8‖v‖L2 ;

(ii) (unbalanced difference)

1

kh

ˆ

pB`
khfqvp¨ ` khq ´ pB´

khfqvp¨ ´ khq

˙

“ 2f 1B0khv ` f2M0
khv `

1

k2h2

ˆ

vp¨ ` khqT3,f p¨, khq ` vp¨ ´ khqT3,f p¨,´khq

˙

and the last term satisfies the remainder bound

(2.8)
1

k2h2
‖vp¨ ` khqT3,f p¨, khq ` vp¨ ´ khqT3,f p¨,´khq‖

L2 ď kh‖f‖W 3,8‖v‖L2 ;

(iii) (integration by parts)

xfB0khv, vy “ ´
1

2
xf 1M0

khv, vy ´
1

4kh
xT2,f p¨, khqvp¨ ` khq ´ T2,f p¨,´khqvp¨ ´ khq, vy ;

(iv) (upper semicontinuity)

‖B0khv‖L2 ď ‖v1‖L2 .

Proof. To obtain (i)–(ii), we simply Taylor expand f up to order two and three respectively.
The bounds are direct using the integral formulation of the Taylor remainder. For example, the
identity

T3,f px, khq “

ż x`kh

x

f
3

pyq
px ` kh ´ yq2

2
dy

8



leads to the bound

pkhq´2‖vp¨ ` khqT3,f p¨, khq‖L2 ď pkhq´2 ¨
1

6
pkhq3‖f‖W 3,8 ¨ ‖v‖L2

ď
1

2
kh‖f‖W 3,8‖v‖L2 .

Turning to (iii), we recall the summation by parts identity xB˘
khu, vy “ ´xu, B¯

khvy together

with the Leibniz rule B˘
khpuvq “ pB˘

khuqv ` up¨ ˘ khqpB˘
khvq. We first compute

xfB0khv, vy “ ´ xv, B0khpfvqy,

“ ´ xv, fB0khvy ´
1

2
xv, pB`

khfqvp¨ ` khq ` pB´
khfqvp¨ ´ khqy(2.9)

and recognize the expression from (i). Rearranging, we obtain the claimed equality.
Finally, we set out to prove (iv). We use Plancherel’s theorem and the inequality |sinpxq| ď |x|

to obtain

‖B0khv‖L2 “
1

kh
‖ξ ÞÑ i sinpkhξqv̂pξq‖L2 ď ‖ξ ÞÑ iξv̂pξq‖L2 “ ‖v1‖L2 ,

which is the claimed bound. �

3. Linear theory

Our goal in this section is to prove invertibility of the weighted linearization, stated as

Proposition 13. There exists h0 ą 0 such that for all h P p0, h0q and all f P L2pRq, the
resolvent problem

Lhv “ f

admits a unique solution v P H1pRq. Furthermore, there exists a positive constant C such that
for all h and f ,

‖L´1

h f‖H1 ď C‖f‖L2 .

To prove this statement, we start by studying the space-continuous setting, and then transfer
properties from the linear operator to Lh. The transfer procedure will take most of our attention.
It will require us to first simplify the expression of Lh, and then to obtain resolvent bounds that
are uniform in h.

3.1. The continuous case. Our starting point is the study of the corresponding second order
differential operator

Lv :“ ω´1Apφ8qpωvq :“ ω´1

ˆ

Bxx ` cBx ` g1pφ8q

˙

pωvq,

together with its adjoint Lad.

Lemma 14. For all f P L2pRq, there exists a unique solution v P H2pRq to

Lv “ f.

Furthermore, there exists a positive constant C such that for all f

‖L´1f‖H2 ď C‖f‖L2 .

The same holds for the adjoint: there exists C ą 0 such that for every f P L2pRq, the adjoint
eigenproblem has a unique solution in H2pRq, which satisfies

‖pLadq´1f‖H2 ď C‖f‖L2 .
9



Proof. Let us start with a detailed proof of the statements for L. We actually show that there
exists δ ą 0 such that the spectrum of L is a subset of the stable sector

Spδq :“ tλ P C : Reλ ă ´δ ´ δ|Im λ|u .

This implies that 0 does not belong to the spectrum of L, which is precisely the statement.
To do so, we even show that Spδq contains the numerical range of L, which is the subset of C
defined as

txLu, uy : ‖u‖L2 “ 1u ,

which contains the spectrum of L, see e.g. [KP13, Lemma 4.1.9]. We first compute that

(3.1) Lu “ Bxxu `

ˆ

c ` 2
ω1

ω

˙

Bxu `

ˆ

ω2

ω
` c

ω1

ω
` g1pφ8q

˙

u.

Testing this equality against u, integrating by part the second order derivative, and recalling for
any differentiable h : R Ñ R the identity Re xhBxu, uy “ ´1

2
xh1u, uy, we compute

Re xLu, uy “ ´‖Bxu‖
2

L2 `

C˜

ˆ

ω1

ω

˙2

` c
ω1

ω
` g1pφ8q

¸

u, u

G

.

We now proceed by replacing ω with ω̃; see (2.4) and the discussion that follows. For any
x P p´1, 1q, we can use the fact that g is concave to estimate

ˆ

ω̃1

ω̃

˙2

` c
ω̃1

ω̃
` g1pφ8q

“ θ2 ´ cθ ` g1p0q `
θ2

4

`

px ` 1q2 ´ 4
˘

` c
θ

2
px ` 1 ´ 2q `

`

g1pφ8q ´ g1p0q
˘

,

ď θ2 ´ cθ ` g1p0q.

Thus, for all x P R we obtain

ˆ

ω̃1

ω̃

˙2

` c
ω̃1

ω̃
` g1pφ8q ď max

`

g1p1q, θ2 ´ cθ ` g1p0q
˘

.

We remark that the right hand side is negative due to assumption 1 and the choice of θ. As a
consequence, we can ensure by taking ε sufficiently small in the definition of ω that there exists
δ ą 0 such that

ˆ

ω1

ω

˙2

` c
ω1

ω
` g1pφ8q ď ´δ.

In particular, we see that Re xLu, uy ď ´‖Bxu‖
2

L2 ´ δ‖u‖2
L2 . Turning to the imaginary part, we

simply estimate

|Im xLu, uy| “ |Im xpc ` 2ω´1ω1qBxu, uy| ď C‖Bxu‖L2‖u‖L2 .

As a result, we obtain the claimed bound from

Re xLu, uy ď ´‖Bxu‖L2 ´ δ ď ´
1

C
|Im xLu, uy| ´ δ.

We conclude the proof by considering Lad. By standard theory, its spectrum is the conjugate
of the spectrum of L. In particular, 0 does not belong to the spectrum of Lad, and the proof is
complete. �

10



3.2. Reformulation of the discrete weighted operator. Before being able to transfer in-
vertibility, we first express Lh in a fashion that is comparable to (3.1). For this, we need to
extract the weight out of the finite differences and to isolate the relevant terms.

Proposition 15. For all v P L2pRq we have the expansion

ω´1∆a,hpωvq “ ∆a,hv ` 2
ω1

ω
B0a,hv `

ω2

ω
M0

a,hv ` Rv,

in which the residual satisfies the bound

(3.2) ‖Rv‖L2 ď Ch‖v‖L2 .

Proof. We start with the decomposition

(3.3) ∆hpωvq “ ω∆a,hv `
`8
ÿ

k“1

ak
1

kh

ˆ

vp¨ ` khqB`
khω ´ vp¨ ´ khqB´

khω

˙

,

and apply Lemma 12–(ii) to obtain the stated expansion, with the associated remainder

R “ ω´1

`8
ÿ

k“1

ak
1

k2h2

ˆ

vp¨ ` khqT3,ωp¨, khq ` vp¨ ´ khqT3,ωp¨,´khq

˙

.

The bound (2.8) is almost sufficient for our purposes here. We refine it by incorporating the
ω´1 into it as was done in Lemma 5. The exponential behavior of ω at infinity ensures that

sup
|y´x|ďkh

ω3pyq

ωpxq
ď

∥

∥

∥

∥

ω3

ω

∥

∥

∥

∥

L8

sup
|y´x|ďkh

ωpyq

ωpxq
ď Cepκ0`δqkh,

which in turn implies

‖ω´1T3,ωp¨, khq‖L8 ď Ck3h3epκ0`δqkh.

Such a sequence grows slowly enough when h is taken to be sufficiently small that the sum
against pakqk converges. This concludes the proof. �

As a consequence of the result above, we are able to express Lh in the form

(3.4) Lhv “ ∆a,hv ` cv1 ` 2
ω1

ω
B0a,hv `

ˆ

g1pφ8q ` c
ω1

ω
`

ω2

ω
M0

a,h

˙

v ` Rv,

where the remainder operator R satisfies (3.2). It is now convenient to compute the adjoint
operator Lad

h using this formulation. Computations similar to (2.9) and those of Proposition 15
lead to the expression

(3.5) Lad
h v “ ∆a,hv ´ cv1 ´ 2

ω1

ω
B0a,hv `

ˆ

g1pφ8q ` c
ω1

ω
`

ω2

ω
M0

a,h ´ 2

ˆ

ω1

ω

˙1˙

v ` Radv,

with a remainder operator Rad that satisfies the same bound (3.2). Let us emphasize that Rad

does not represent the adjoint of R.

3.3. Resolvent bounds. This part mostly follow [HJ24]. Let us introduce

Λphq :“ inf
 

‖Lhv‖L2 : v P H1pRq, ‖v‖H1 “ 1
(

,

together with

Λ :“ lim inf
hÓ0

Λphq.

In the next subsection, we will actually need similar definitions involving the adjoint operator
of Lh. To simplify the discussion, we refrain to provide these here, and will explain at a later
stage how to adapt the content that follows.

Our goal is to show that Λ ą 0. We establish a bound from below by constructing a weakly-
convergent sequence.
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Lemma 16. There exists a sequence phn, vn, fnqně0 of p0, δ0q ˆ H1 ˆ L2, together with v˚ P H1

and f˚ P L2, such that the following holds.

(i) For all n ě 0, ‖vn‖H1 “ 1 and

(3.6) Lhn
vn “ fn.

When n Ñ `8, we have

hn ÝÑ 0,

‖fn‖L2 ÝÑ Λ.

(ii) When n Ñ `8, the following weak convergences hold:

vn á v˚ in H1,

fn á f˚ in L2,

Lhn
vn á Lv˚ in L2.

For any m ą 0, when n Ñ `8, the following strong convergence holds:

‖vn‖L2p´m,mq Ñ ‖v˚‖L2p´m,mq.

(iii) There exists a positive constant C1 such that

Λ ě C1‖v˚‖H2 .

Proof. The existence of a sequence phn, vn, fnq satisfying (i) is a direct consequence of the
definition of Λ. Since Lhn

has real coefficients, we can ensure that vn and fn have real values.
We now prove (ii). Using the first point, together with equation (3.6), we successively get that

the sequences pvn, fnqně0 and pvn, fn,Lhn
vnqně0 are bounded. Extracting a sub-sequence, we

obtain the weak convergence of the latter sequence in H1 ˆL2 ˆL2 to some element pv˚, f˚, y˚q.
We show that y˚ “ Lv˚ by testing against a smooth and compactly supported function ξ:

lim
nÑ`8

xLhn
vn, ξy “ lim

nÑ`8
xvn,L

ad
hn
ξy,

“ xv˚,L
adξy,

“ xLv˚, ξy,

the second equality coming from the fact that Lad
hn
ξ strongly converges to Ladξ. Uniqueness of

the weak limit concludes this point. It remains to show the strong L2-convergence on compact
sets. This follows from the weak H1-convergence and the fact that the injection H1p´m,mq ãÑ
L2p´m,mq is compact.

Turning to (iii), we pass to the weak limit in (3.6) to obtain Lv˚ “ f˚. Using the invertibility of
L, the weak lower semicontinuity of the L2-norm and the convergence of ‖fn‖L2 , we successively
obtain

C‖v˚‖H2 ď ‖f˚‖L2 ď lim inf
nÑ`8

‖fn‖L2 “ Λ

for a positive constant C, thus concluding the proof. �

To conclude that Λ ‰ 0, we now rely on the specific structure of the problem to bound
‖v˚‖L2 from below. We test the eigenvalue equation against v1 and v respectively, and handle
the different terms that appear in these expressions.

Lemma 17. There exists positive constants C and h0 such that for all h P p0, h0q and for all
pv, fq P H1 ˆ L2 that satisfy Lhv “ f ,

‖v1‖2L2 ď C‖f‖2L2 ` C‖v‖2L2 .
12



Proof. We test the eigenproblem Lhv “ f against v1, and use (3.4) to obtain

c‖v1‖2L2 ď ‖f‖L2‖v1‖L2 `
∣

∣

@

∆a,hv, v
1
D∣

∣ ` 2

∥

∥

∥

∥

ω1

ω

∥

∥

∥

∥

L8

‖B0a,hv‖L2‖v1‖L2 ` C‖v‖L2‖v1‖L2 .

We now successively inspect the different terms, starting with the second order difference. We
claim that x∆a,hv, v

1y “ 0: indeed for every k ě 1, integration and summation by parts gives

x∆khv, v
1y “ ´xv1,∆khvy “ 0.

Proceeding to the next term, we remark that the definition of ω ensures that ‖ω´1ω1‖L8 ď θ`ε;
see Lemma 8. In combination with Lemma 12–(iv), this leads to

pc ´ 2θ ´ 2εq‖v1‖2L2 ď ‖f‖L2‖v1‖L2 ` C‖v‖L2‖v1‖L2 .

At this stage, it is useful to take ε so small that c´2θ´2ε ą 0, which is possible due to Lemma
7. We now apply Young’s inequality xy ď α

3
x2 ` 3

4α
y2 twice with α “ c´2θ´2ε and x “ ‖v1‖L2

to arrive at the claimed estimate. �

Proposition 18. There exist positive constants m, C2 and C3 such that

‖v˚‖
2

L2p´m,mq ě C2 ´ C3Λ
2.

Proof. We test the eigenproblem against v, once again using (3.4) to obtain

xf, vy “ x∆a,hv, vy ` cxv1, vy ` 2

B

ω1

ω
B0a,hv, v

F

`

Bˆ

g1pφ8q ` c
ω1

ω
`

ω2

ω
M0

a,h ` R

˙

v, v

F

.

We see that for all sufficiently small h:

x∆a,hv, vy “ 2
`8
ÿ

k“1

ak
cospkhq ´ 1

k2h2
xv̂, v̂y ď 0.

Indeed, dominated convergence and assumption 3 ensures that 2
ř`8

k“1
ak

cospkhq´1

k2h2 Ñ ´1 when
h Ñ 0. Further using the identity xv, v1y “ 0 (which is easily obtained by integrating by parts

once), and applying Lemma 12–(iii) with f “ 2ω1

ω
, we obtain

(3.7) xf, vy ď

C˜

g1pφ8q ` c
ω1

ω
`

ˆ

ω1

ω

˙2

M0
a,h ` R̃

¸

v, v

G

,

where the remainder satisfies ‖R̃v‖L2 ď Ch‖v‖L2 thanks to (3.3) and (2.7). At this stage, it

is worth mentioning that while
A

ω1

ω
v, v

E

has a sign, this is not the case for

B

´

ω1

ω

¯2

M0
a,hv, v

F

.

Thus, extra care should be taken with the latter.
Using Assumption 1, the definition of ω and (2.3), we see that both

lim
´8

g1pφ8q ` c
ω1

ω
`

ˆ

ω1

ω

˙2

` Ch “ g1p1q ` Ch

and

lim
`8

g1pφ8q ` c
ω1

ω
`

ˆ

ω1

ω

˙2

` Ch “ g1p0q ´ cθ ` θ2 ` Ch

are negative, possibly after restricting to smaller values of h. For any m P R, we use the second
limit to compute

xf, vyL2pm,`8q ď

ˆ

g1p0q ´ cθ ` θ2 ` Ch ` o
mÑ`8

p1q

˙

‖v‖2L2pm,`8q

`

C

ˆ

ω1

ω

˙2

M0
a,hv ´ θ2v, v

G

L2pm,`8q

.
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Since ω1

ω
“ ´θ for large enough m, a simple Cauchy-Schwartz inequality allows to bound the

second term as

θ2
´

@

M0
a,hv, v

D

L2pm,`8q
´ ‖v‖2L2pm,`8q

¯

ď 0.

Setting m large enough in the above discussion, and using very similar computations on the set
p´8,´mq, we conclude from (3.7) that there exist a positive constant η such that

(3.8) ´‖f‖L2‖v‖L2 ď xf, vy ď C‖v‖2L2p´m,mq ´ η‖v‖2L2 .

We now apply 3.8 to the sequence constructed in Lemma 16. Invoking Young’s inequality, we
obtain

C‖vn‖
2

L2p´m,mq ě η‖vn‖
2

L2 ´ ‖fn‖L2‖vn‖L2 ,

ě
η

2
‖vn‖

2

L2 ´
1

2η
‖fn‖

2

L2 .(3.9)

We then add to (3.9) a ´β multiple of the bound from Lemma 17, choosing β “ η
2pC`1q as the

solution of η
2

´ βC “ β to obtain

C‖vn‖
2

L2p´m,mq ě
´η

2
´ βC

¯

‖vn‖
2

L2 ` β‖v1
n‖L2 ´

ˆ

1

2η
` Cβ

˙

‖fn‖
2

L2 ,

ě β ´ C‖fn‖
2

L2 .

To conclude the proof, we recall that ‖fn‖ ď Λ was obtained during the proof of Lemma 16–(iii),
and use the strong convergence of vn towards v˚ in L2p´m,mq when n Ñ `8. �

We can finally combine Lemma 16–(iii) and Proposition 18, to obtain

Λ2 ě C1‖v˚‖
2

L2 ě C1‖v˚‖
2

L2p´m,mq ě C1C2 ´ C1C3Λ
2.

Rearranging, we find

Λ2 ě
C1C2

1 ` C1C3

ą 0,

establishing that indeed Λ ą 0.
To conclude this section, we explain how the material above can be adapted to the adjoint

problem. Proceeding from the representation (3.5), we introduce the quantities

Λadphq :“ inf
!

‖Lad
h v‖L2 : v P H1pRq, ‖v‖H1 “ 1

)

,

and
Λad :“ lim inf

hÓ0
Λadphq.

which are analogous to those analyzed above for Lh. It is then straightforward to adapt Lemmas
16, Lemma 17 and Proposition 18 to the adjoint case. From there, Λad ą 0 follows as above.

3.4. The discrete case: proof of Proposition 13. We are finally ready to prove the main
statement of section 3. We follow [BCC03].

Proof of Proposition 13. Since Λ ą 0, there exists h0 ą 0 such that Λphq ą 0 for all h P p0, h0q.
For such h, it follows that Lh has a bounded inverse, when seen as linear operator from H1 to
its range R Ă L2. In particular, R is closed in L2, and we assume by contradiction that R ‰ L2.

Then there exists a nonzero w P L2 such that for all v P H1,

0 “ xLhv,wy “ xv,Lad
h wy,

thus ensuring Lad
h w “ 0. This is a contradiction with the fact that Λadphq ą 0. The bound

‖L´1

h f‖H1 ď 1

Λphq‖f‖L2 comes from the definition of Λphq. �

Remark 19. In the previous proof, control of h0 is nearly intractable. It would require estimates
involving the behaviour of Λphq as h approaches 0. This is out of reach for now.
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4. Fix point argument

We are now ready to prove our main result concerning the existence of travelling fronts. As
a final preparation, we obtain an estimate for the quadratic terms Q.

Lemma 20. Let p P t2,`8u. There exists C ą 0 and h0 ą 0 such that for all h P p0, h0q, and
all v such that ‖v‖L8 ď 1,

‖Qpv1q ´ Qpv2q‖Lp ď ‖v1 ´ v2‖Lp p‖v1‖L8 ` ‖v2‖L8q .

Proof. We use the Taylor expansion structure of Q. For every set of reals a, b1 and b2, we may
use the integral formulation to compute

T2,gpa, b2q ´ T2,gpa, b1q “

ż a`b2

a

g2psq

2!
pa ` b2 ´ sqds ´

ż a`b1

a

g2psq

2!
pa ` b1 ´ sqds,

“

ż a`b2

a`b1

g2psq

2!
pa ` b2 ´ sqds ´

ż a`b1

a

g2psq

2!
pb2 ´ b1qds.

Both of these integrals can be bounded by C|b2 ´ b1| p|b1| ` |b2|q, which directly leads to the
claimed estimate. �

Proof of Theorem 2. We reformulate Lemma 9, and see that it is enough to construct a solution
v P L8pRq to the fix point equation

v “ L´1

h pR ` Qpvqq .

Thanks to Lemma 11, Proposition 13 and Lemma 20, the map v ÞÑ L´1

h pR ` Qpvqq is a con-
traction on the Banach space

 

v P L2 X L8 : ‖v‖L8 ď δ
(

, ‖¨‖L2 ` ‖¨‖L8

provided that δ and h0 are chosen small enough. Applying the Banach fix point theorem
concludes the proof. �
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