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ONE SHOT INVERSE SCATTERING REVISITED

ROLAND GRIESMAIER∗ AND MARTIN HANKE†

Abstract. We develop and discuss a novel reconstruction algorithm for the inverse source
problem and the inverse scattering problem for the Helmholtz equation with well-separated compactly
supported sources or scatterers in two-dimensional free space from far field observations of a single
radiated or scattered wave. We show that a rational approximation of a Laurent polynomial formed
by the low order Fourier coefficients of the given far field pattern can be used to determine straight
lines connecting the support of the sources or scatterers to the origin. After repeating this procedure
for many different choices of the origin, we apply a filtered backprojection algorithm to recover
information on the number and the location of the unknown sources or scatterers. We give numerical
examples to illustrate the performance and limitations of our reconstruction algorithm.

Key words. Inverse source problem, inverse scattering, Helmholtz equation, AAA algorithm,
filtered backprojection

AMS subject classifications. 35R30, 65N21

1. Introduction. We continue previous investigations [14] of rational approxi-
mation techniques for solving inverse source and inverse scattering problems for the
two-dimensional time-harmonic acoustic wave equation at fixed frequency. Our goal
is to recover information about the number and the positions of a few well-separated
compactly supported sources or scatterers from the far field pattern of a single radi-
ated or scattered wave. In [14] asymptotic expansions of Bessel functions for large
order have been used to show that the Fourier coefficients of the far field pattern
associated to high spatial frequencies can be linked to a rational function with poles
that cluster near the sources or scatterers. This method, however, is very sensitive to
noise, because the absolute values of the Fourier coefficients with large indices decay
superlinearly, and thus most of them are below any reasonable noise level. In the
present work we turn the focus from high order Fourier modes of the far field pattern
to its low order modes, because these are less susceptible to data errors. Applying
asymptotic expansions of Bessel functions for large argument, we link these Fourier
coefficients to a rational function with poles that determine straight lines connecting
the unknown sources or scatterers to the origin of the chosen coordinate system. We
use a customized variant of the AAA algorithm to estimate these lines.

The given far field depends on the particular choice of the origin. However,
since the background medium is assumed to be homogeneous, we can easily retrieve
numerically the far field pattern with respect to any other position of the origin
– henceforth called a virtual origin – by multiplication with a suitable modulating
factor. Repeating the procedure outlined above for many different virtual origins
yields a large number of straight lines intersecting the supports of the sources or
scatterers. Parametrizing these lines by means of their normal vector and their signed
distance to a (now fixed) origin, and rebinning these data on an equidistant grid on the
unit cylinder renders the possibility to apply a filtered backprojection for the Radon
transform to recover information on the number and the approximate positions of the
sources or scatterers.
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This method works particularly well, when the far fields of the individual sources
or scatterers can be approximated by far fields radiated by a rather small number
of well separated point-sources. But useful information can often also be inferred
for other sources or scatterers, because the insight obtained from these reconstruc-
tions can be exploited in a subsequent step as a priori information for determining
the shapes of their supporting domains. For this one can use, e.g., iterative recon-
struction schemes [19, 17], or far field splitting schemes [11, 12, 13] in combination
with reconstruction algorithms for single objects like, e.g., the convex scattering sup-
port [20, 21, 29], the range test [27], or the enclosure method [15, 16].

Alternative methods for locating well-separated point-like sources or scatterers by
means of sparse optimization have been addressed, e.g., by Fannjiang, Strohmer, and
Yan [7], and by Pieper, Tang, Trautmann, and Walter [26]. An algorithm to estimate
the number, positions and intensities of point-sources algebraically from Cauchy data
of the radiated wave has been proposed by El Badia and Nara [6]. In another scheme
developed in [10] together with Raasch we have used a windowed Fourier transform
of the far field pattern followed by a filtered backprojection to recover information
on the supports of well-separated sources or scatterers from a single far field pattern.
However, in particular at low frequencies this method gives rather blurry reconstruc-
tions. A combination of a range test algorithm and an iterative scheme based on the
reciprocity gap principle for the inverse source problem has been discussed by Alves,
Kress, and Serranho [1]. Finally, the no response test by Luke and Potthast [22] is a
sampling method to locate scatterers from the far field pattern for a single incident
wave.

The outline of this article is as follows. In Section 2 we provide the problem
setting for the direct and inverse source problem for the Helmholtz equation. After
deriving a connection between the low order Fourier modes of the radiated far field
pattern and sparse exponential sums in Section 3, we use it to recover information on
the location of the present sources by rational approximation. To this end we derive
a special variant of the AAA algorithm in Section 4, and we apply it to determine
lines connecting the supports of the sources to the current origin of the coordinate
system. Section 5 focuses on how this computation can be extended by considering a
large number of virtual origins, and on how the resulting data set can be inverted by
filtered backprojection. Here we also provide a series of numerical examples. Finally,
in the appendix we establish a quantitative error estimate for the approximation of the
Bessel functions for large argument that we use in the derivation of the reconstruction
algorithm.

2. Problem setting. Consider the source problem

∆u+ k2u = −f in R
2 (2.1)

for the Helmholtz equation, where f is a distribution with compact support in R2

and k > 0 denotes the wave number. The unique radiating solution u of (2.1), i.e.,
the distributional solution that satisfies the Sommerfeld radiation condition

∂u

∂r
− iku = o(r−1/2) as r = |x| → ∞ ,

admits an asymptotic expansion

u(rx̂) =
eikr√
kr

eiπ/4√
8π

u∞(x̂) + O(r−3/2) , x̂ ∈ S1 , as r → ∞ , (2.2)



ONE SHOT INVERSE SCATTERING 3

near infinity, cf., e.g., Colton and Kress [3, p. 90]. The associated function u∞ : S1 →
C is known as the far field pattern of u, or, for short, as the far field radiated by the
given source f .

Here we are interested in the inverse source problem, that is, in retrieving infor-
mation about the source f from knowledge of its radiated far field. Without further
assumptions the source f itself cannot be retrieved from the far field pattern, as is
worked out, e.g., in Bleistein and Cohen [2]. However, assuming that the individual
source components are sufficiently well-separated – the diameter of each component
being strictly smaller than the distance to the other components – and that each of
them radiates a non-trivial far field, it has been shown by Sylvester [29] that the
number and the location of these components are uniquely determined. In particular,
superpositions of finitely many separated point-sources can be uniquely reconstructed.

The radiating solution u of (2.1) can be written as a volume potential

u(x) =

∫

R2

Φ(x− y)f(y) dy , x ∈ R
2 , (2.3)

where Φ(x) = i
4H

(1)
0 (k|x|), x ∈ R2 \ {0}, is the radiating fundamental solution of the

Helmholtz equation in R2, with H
(1)
0 denoting the Hankel function of the first kind

of order zero. Substituting the asymptotic expansion of Hankel functions for large
argument [3, p. 89], we conclude from (2.2) and (2.3) that the far field of u can be
written as

u∞(x̂) =

∫

R2

e−ikx̂·yf(y) dy , x̂ ∈ S1 .

For fixed y ∈ R
2 we now insert the Jacobi-Anger expansion [3, p. 91]

e−ikx̂t·y =
∑

n∈Z

(−i)ne−in arg yJn(k|y|) eint ,

where arg y is the polar angle of y for y 6= 0, and arg 0 = 0, and where x̂t = (cos t, sin t)
with 0 ≤ t < 2π. From this we obtain the Fourier series of the far field pattern

u∞(x̂t) =
∑

n∈Z

ane
int

with

an = (−i)n
∫

R2

e−in arg yJn(k|y|)f(y) dy , n ∈ Z . (2.4)

Remark 2.1. Let us assume that the source f is supported in a disk of radius R
around the origin. In many practically relevant situations (see [14] for point-sources,
single-, and double-layer sources, and [11, 13] for square integrable sources) it has
been shown that, after restricting the strength of the source and the sensitivity of the
sensors that are used to measure the far fields, the observable part of the far field
radiated by f belongs to a finite dimensional subspace

VΩ∗
:=
{
v ∈ L2(S1)

∣∣∣ v(x̂t) =
∑

|n|≤Ω∗

ane
int
}

of Ω∗-bandlimited functions, where Ω∗ can be chosen between kR and 3kR/2 for
a wide range of strength and sensitivity thresholds for the sources and receivers.
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Fig. 2.1: Fourier coefficients of a particular far field (absolute values); the right hand
side plot zooms in on the oscillating regime.

Following [13], we refer to VΩ∗
as the subspace of nonevanescent far fields radiated

from sources within a disk of radius R around the origin, and to the orthogonal
projection PΩ∗

u∞ of a far field u∞ onto this subspace as the nonevanescent part of
this far field. As suggested in [11, 12] we estimate Ω∗ numerically from

Ω∗ ≈ Ωη := min
{
Ω
∣∣∣ ‖PΩu

∞‖L2(S1) ≥ (1− η)‖u∞‖L2(S1)

}
(2.5)

for some sufficiently small threshold parameter η > 0, which should take the noise
level into account, and then approximate

kR ≈ 2

e
Ωη =: kRη (2.6)

from the given data. ⋄
Example 2.2. Figure 2.1 shows the absolute values |an| versus n ∈ Z of the

Fourier coefficients of the far field to be used in Example 4.2 below, with two sources
at about (10, 10) and (6,−10) and wave number k = 1. The plot exhibits the typical
features of these data, as it roughly splits into three parts: The first one – bounded
by the two solid vertical lines – concerns the low-frequent spectrum. This part cor-
responds to the frequencies associated with indices n with |n| . kRη. Choosing
η = 10−6 in (2.5) gives Ω∗ ≈ Ωη = 20. According to (2.6) we therefore obtain the
estimate kRη ≈ 14.72 from this plot, while the true value is kR ≈ 14.53. Within this
range, the Fourier coefficients are oscillating, in agreement with the corresponding
behavior of the Bessel functions Jn(k| · |) that occur in (2.4).

The second feature is the superlinear decay of the Fourier coefficients correspond-
ing to indices n with |n| & kRη; we refer to this regime as the tail of this plot. And
finally, when this superlinear decay has reached the order of the data noise (here,
machine precision), all one can see is noise in the respective coefficients. ⋄

In [14] the evanescent part of the far field, i.e., the tail of the plot in Figure 2.1,
has been used to deduce some information about the support of the source f by means
of rational approximation techniques. The corresponding algorithm suffers from the
fact that the information content of this tail is low for realistic noise levels, i.e., for
much larger noise levels than in the plot. It is the purpose of the present paper to
explore, whether and how the nonevanescent component of the far field can be used
instead. In fact, the algorithm which we propose below only employs the Fourier
coefficients, which are enclosed by the two dotted vertical lines in Figure 2.1.
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3. The idea. Consider for the moment the situation that the source f is close
to a single point-source at position y = y0, i.e.,

f ≈ γδy0
for some γ ∈ C , (3.1)

in the sense that the far field radiated by the source f is close to the far field of the
point-source. Using polar coordinates

y0 = rx̂θ = r(cos θ, sin θ)

with r > 0 and 0 ≤ θ < 2π again, this means that

an ≈ γ(−i)ne−inθJn(kr) , n ∈ Z , (3.2)

according to (2.4).
As we work out in the appendix, the values of the Bessel functions in (3.2) can

be approximated by

Jn(kr) ≈
√

2

πkr

(
cos
(
kr − π

2
n− π

4

)
− sin

(
kr − π

2
n− π

4

)4n2 − 1

8kr

)
, (3.3)

provided that

|n| ≤ N .
√
kr . (3.4)

The right hand side of (3.3) corresponds to the approximation J
(1,1)
n (kr) considered

in (A.3) in the appendix.
Inserting (3.3) into (3.2) and rewriting sine and cosine via complex exponentials

we eventually arrive at

an ≈ γβn(e
−iθ)n + γβn(−e−iθ)n =: bn , |n| ≤ N , (3.5)

where

βn = ω0 + ω1n
2 (3.6)

is a quadratic polynomial expression in n with coefficients

ω0 =
eiπ/4√
2πkr

e−ikr
(
1 +

i

8kr

)
and ω1 =

e−iπ/4

√
2πkr

e−ikr 1

2kr
. (3.7)

Given that we are interested in the inverse source problem, we can therefore, in
principle, fix some N .

√
kr, use the given Fourier coefficients with indices |n| ≤ N

as data, and solve (3.5) for the unknown polar angle θ and for the coefficients γω0

and γω1; according to (3.7) one can then retrieve r from ω0/ω1. This is an exponential
approximation problem, which is very ill-conditioned; in particular, the approximation
of r will suffer severely under small uncertainties in the reconstructed value of θ.

Therefore we restrict our efforts merely to the approximation of the exponential
terms ±eiθ in (3.5), i.e., the polar angle of the source, and ignore the associated
prefactors; note, however, that then we cannot decipher whether the polar angle of
the source equals θ or θ±π. To determine these two angles we apply the z-transform
and define the Laurent polynomial

ϕN (z) =

2N∑

n=0

an−Nz
−n−1 , z ∈ C ; (3.8)
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see Weiss and McDonough [31]. Using (3.5) we observe that

ϕN (z) ≈ ψN (z) :=

2N∑

n=0

bn−Nz
−n−1 (3.9a)

= γ

2N∑

n=0

(βn−N (e−iθ)N

z
(ze−iθ)−n +

βn−N (−e−iθ)N

z
(−ze−iθ)−n

)

≈ γ

∞∑

n=0

(βn−N (e−iθ)N

z
(ze−iθ)−n +

βn−N (−e−iθ)N

z
(−ze−iθ)−n

)
(3.9b)

=: ψ(z)

for |z| > 1. Inserting (3.6) and evaluating the series we find that

ψ(z) = α+
1

z − eiθ
+ η+

eiθ

(z − eiθ)2
+ ξ+

eiθ(eiθ + z)

(z − eiθ)3

+ α−
1

z + eiθ
+ η−

eiθ

(z + eiθ)2
+ ξ−

eiθ(eiθ − z)

(z + eiθ)3

(3.10)

with

α+ = γ(ω0 +N2ω1)e
−iNθ , α− = γ(ω0 +N2ω1)(−1)Ne−iNθ ,

η+ = −2γNω1e
−iNθ , η− = 2γNω1(−1)Ne−iNθ ,

ξ+ = γω1e
−iNθ , ξ− = γω1(−1)Ne−iNθ .

The important observation to make is that ψ is a rational function with two poles on
the unit circle, which are symmetric with respect to the origin and whose polar angles
coincide up to ±π with that of the source point y0 in (3.1).

Let us be more specific about the conditions under which the rational approxi-
mation ϕN ≈ ψ in (3.9) is valid. The error in (3.9a) is due to the chosen model (3.1)
in combination with the approximation (3.3) of the Bessel functions in (3.5), (3.6).
Suppose that we have access to (possibly noisy) Fourier coefficients an of the far field
radiated by f , such that

πkr

2

N∑

n=−N

|an − bn|2 = δ2 . (3.11)

The normalizing factor in front of the sum is meant to cancel the prefactor of the
asymptotic representation (3.3) of the Bessel functions; therefore δ may be interpreted
as an estimate of a certain relative error in the Fourier coefficients. Then the total
squared pointwise error in (3.9a) can be bounded for |z| = ρ as follows:

|ϕN (z)− ψN (z)|2 ≤
2N∑

n=0

|an−N − bn−N |2
2N∑

n=0

(ρ−n−1)2

=
2

πkr

δ2

ρ2
1− ρ−4N−2

1− ρ−2
=:

2Cρ

πkr

δ2

ρ2
.

(3.12)
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The estimation of the truncation error is more involved: Since

|bn| ≤ 2|γ||βn| ≤ 2|γ|
(
|ω0|+ |ω1|n2

)

by virtue of (3.5) and (3.6), the truncation error satisfies

|ψ(z)− ψN (z)| ≤
∞∑

n=N+1

|bn|ρ−N−n−1

≤ 2|γ|ρ−N−1
(
|ω0|

∞∑

n=N+1

ρ−n + |ω1|
∞∑

n=N+1

n2ρ−n
)

for |z| = ρ > 1. Taking (3.7) into account, and evaluating the two series, this eventu-
ally leads to a bound of the form

|ψ(z)− ψN (z)| ≤ Cf√
2πkr

(
1 +

N2

2kr

)
ρ−2N−2 , (3.13)

where the constant Cf is a multiple of the strength of the point-source |γ|, and
hence, of ‖(an)n‖ℓ2 . The latter follows immediately from (3.2) and the fact that∑

n∈Z
J2
n(kr) = 1; see [5, 10.23.3]. Ideally, we want the truncation error to be smaller

than the (inevitable) data and modeling error (3.12). According to (3.12) and (3.13)
this is the case when

ρ ≥
(

1

C
1/2
ρ

1

2

(
1 +

N2

2kr

)) 1
2N+1 (Cf

δ

) 1
2N+1

. (3.14)

Remark 3.1. The number 2N + 1 of Fourier coefficients that we use in the
definition of ϕN in (3.8) is typically small and restricted by the validity of the ap-
proximation (3.3), i.e., by the condition (3.4). According to Lemma A.1, and based on
numerical tests similar to Figure A.1, somewhat larger values of N can be used when

replacing J
(1,1)
n (kr) on the right hand side of (3.3) by some J

(p,q)
n (kr), q ∈ {p− 1, p},

as in (A.3) with p ≫ 1. In this case the approximation (3.9) remains valid with a
rational function ψ similar to (3.10), which still has two poles on the unit circle that
are symmetric with respect to the origin and whose polar angles coincide up to ±π
with that of the source point y0 in (3.1). The only difference is that these poles then
come with multiplicities up to order 2(p+ q)− 1 instead of three. However, this does
not affect the reconstruction of the polar angle of the source point which is obtained
by the algorithm that we develop next in Section 4 below. Therefore, using a few
more Fourier coefficients than determined by (3.4) is also justified. We will make use
of this observation in Examples 5.4 and 5.5 in Section 5. ⋄

Of course, the presentation above is rather simplified in that we have made the
assumption that a single point-source can be used as an effective model for the true
source f . Since our real interest is in the case of several separated sources, we now
turn to the case where a combination of a finite number of point-sources is needed for
a good approximation of f , i.e., we assume that

f ≈
J∑

j=1

γjδyj
, yj = rj x̂θj , (3.15)
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for some small J ∈ N, where rj > 0, 0 ≤ θj < 2π, and γj ∈ C. In this case we proceed
similarly, and truncate the Laurent polynomial (3.8) after

N . min
j

√
krj (3.16)

terms. Then, since the solution of the source problem, the Fourier coefficients of its
far field, and the definition of the Laurent polynomial (3.8) all depend linearly on the
source, we obtain by superposition that the resulting Laurent polynomial ϕN is close
to a rational function ψ with poles in ±eiθj , meaning that

|ϕN (z)− ψ(z)| ≤ 4

N

(Cρ

2π

)1/2 δ
ρ

for |z| = ρ , (3.17)

provided that ρ > 1 satisfies the inequality (3.14) and N satisfies (3.16).
We summarize our findings of this section. Assuming that the source f is well

approximated by a combination of finitely many point-sources, then the Laurent poly-
nomial (3.8) agrees up to the relative modeling and data error (3.17) with a rational
function whose poles provide the polar angles of the individual sources. This is true
for all z in the exterior of a disk of radius ρ > 1 around the origin in the complex
plane, as long as ρ satisfies the inequality (3.14), which depends on the strength of
the sources and the amount of errors in the data, and in particular, on the number of
terms of the Laurent polynomial.

The above analysis suggests to recover the polar angles θj of the source points yj
by (i) approximating ϕN on some circle |z| = ρ > 1 numerically by a rational function
with poles on or close to the unit circle, and (ii) by using these poles as estimates
of ±eiθj . Take note that ϕN in itself is a rational function with a single pole (of
order 2N + 1) at the origin; the crucial point is therefore to approximate ϕN by a
rational function of smaller (denominator) degree with poles close to the unit circle.

Remark 3.2. The definition (3.8) of the Laurent polynomial ϕN is not symmet-
ric with respect to the order of the Fourier coefficients a−N , . . . , aN . When evaluat-
ing ϕN (z) at z ∈ C with |z| = ρ > 1 the information content of the Fourier coefficients
with positive indices is much more damped compared to that within the coefficients
with negative indices. This is somewhat unsatisfactory. Reversing the order of the
Fourier coefficients, we can alternatively consider

ϕ̃N (z) =

2N∑

n=0

aN−nz
−n−1 , z ∈ C . (3.18)

Applying the same arguments as in (3.9) we obtain that, for |z| = ρ > 1, this Laurent

polynomial satisfies ϕ̃N (z) ≈ ψ̃(z), where the rational function

ψ̃(z) =

J∑

j=1

(
α̃j

1

z − eiθj
+ η̃j

eiθj

(z − eiθj)2
+ ξ̃j

eiθj(eiθj + z)

(z − eiθj )3

+ α̃−j
1

z + eiθj
+ η̃−j

eiθj

(z + eiθj )2
+ ξ̃−j

eiθj(eiθj − z)

(z + eiθj )3

)

has coefficients

α̃j = γj(ωj,0 +N2ωj,1)e
−iNθj , α̃−j = γj(ωj,0 +N2ωj,1)(−1)Ne−iNθj ,

η̃j = −γj2Nωj,1e
−iNθj , η̃−j = γj2Nωj,1(−1)Ne−iNθj ,

ξ̃j = γjωj,1e
−iNθj , ξ̃−j = γjωj,1(−1)Ne−iNθj ,
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and the same poles as ψ. In our numerical examples in Section 5 we will not only
use ϕN but also ϕ̃N as well as (ϕN + ϕ̃N )/2 and (ϕN − ϕ̃N )/2 to symmetrize the
usage of the Fourier data in the reconstruction algorithm. ⋄

4. A special variant of the AAA algorithm. To determine a suitable rational
approximation of the Laurent polynomial ϕN we suggest the AAA algorithm, which
has been proposed by Nakatsukasa, Sète, and Trefethen [24] as a powerful tool for
rational approximation. This algorithm determines a rational function which matches
a set of given function values of ϕN to a prescribed tolerance.

In view of the discussion in the previous section these function values should
correspond to arguments z ∈ C whose absolute value |z| = ρ > 1 satisfies (3.14).
Moreover, |z| should not be too large in order to extract the most of the information
content hidden in all relevant Fourier coefficients an with |n| ≤ N . Concerning the
terms occurring in (3.14), take note that 1 ≤ Cρ ≤ 2N + 1 by virtue of (3.12), and

hence 1 ≤ C
1/(4N+2)
ρ ≤ exp(1/(2e)) < 1.202; further note that N2/(kr) is about one

in view of (3.16). Finally, we choose 4 ‖(an)n‖ℓ2 for the value of the constant Cf on
the grounds of the derivation of (3.13). Accordingly we replace the right hand side
of (3.14) by

ρ∗ := (4 ‖(an)n‖ℓ2/δ)
1

2N+1 (4.1)

in our numerical code. To estimate the value of δ in (3.11), we use a guess for the

relative data and modeling error ∆e :=
(∑

|n|≤N |an − bn|2/
∑

|n|≤N |an|2
)1/2

and
then approximate

δ ≈ ∆e
(πN2

2

N∑

n=−N

|an|2
)1/2

. (4.2)

Therewith, we can evaluate (4.1) and choose the input arguments for the AAA al-
gorithm from the circle |z| = ρ∗. More precisely, we determine the function val-
ues yν = ϕN (zν) for an equidistant angular grid

z±ν = ±ρ∗ eiνπ/M , ν = 1, . . . ,M , (4.3)

with 2M points on this circle. In view of (3.17) we then aim for a fit of order

τ :=
2

N

(Cρ∗

2π

)1/2 δ
ρ∗

(4.4)

of these data. We note that this threshold is smaller by a factor of 1/2 than the right
hand side of (3.17), but this slight overfitting has yielded better numerical results.
The reason is that when the tolerance is too loose then the AAA algorithm will often
terminate with small degree rational functions and therefore does not provide enough
pole information. Alternatively, one may take this factor 1/2 as a compensation for
the overestimation of the true error in (3.9) by using upper bounds.

Remark 4.1. We mention in passing that the underlying approach is simi-
lar to a method for parameter estimation for sparse exponential sums suggested by
Derevianko, Plonka, and Petz [4]. However, the number of terms of the Laurent poly-
nomial ϕN used in [4] is larger by orders of magnitude, so that a fine angular spacing
of the grid points zν of (4.3) could be achieved in [4] by choosing all (2N +1)th com-
plex roots of ρ2N+1. For this particular grid the associated function values coincide
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with those of another rational function with the same poles, so that the approxima-
tion (3.9b) is no longer necessary. This is the major difference to our setting here,
because it enables the choice ρ = 1 utilized in [4]. In our application the corresponding
number of input data pairs for the AAA algorithm would be much smaller, namely
at most ten to twenty. We did some numerical experiments with the method in [4]
and found that the corresponding rational approximations are not sufficient for our
purposes. ⋄

In the original paper [24] the rational function determined by the AAA algorithm
is represented in barycentric form, i.e.,

R(z) =
∑

ν∈N

wνyν
z − zν

/
∑

ν∈N

wν

z − zν
, (4.5)

with appropriate (complex) parameters wν 6= 0, ν ∈ N . As observed earlier, cf.,
e.g., Schneider and Werner [28], a rational function of the form (4.5) interpolates
by construction the data points (zν |yν) with ν ∈ N ⊂ {±1, . . . ,±M}. In the AAA
scheme the parameters wν are chosen in such a way that the fit for the remaining data
points is optimal in an appropriate sense; compare (4.7) below. However, since ϕN

is no even function in general, the poles of this rational approximation will not be
symmetric with respect to the origin. Another issue with (4.5) is, that although ψ
of (3.10) vanishes at infinity, the generic AAA approximation will not.

We therefore replace (4.5) by the Ansatz

R(z) =
∑

ν∈N+

wν

( yν
z − zν

− y−ν

z + zν

)/(
w∞ +

∑

ν∈N+

wν

( 1

z − zν
− 1

z + zν

))
, (4.6)

where N+ ⊂ {1, . . . ,M}: Similar to the original version (4.5) this function interpo-
lates the data points (zν |yν) with |ν| ∈ N+; moreover, unless w∞ = 0, the rational
approximation (4.6) vanishes at infinity, and since its denominator is an even function,
the zeros of the latter – which constitute the poles of R – are symmetric with respect
to the origin.

Let

M = {±1, . . . ,±M} \ {ν : |ν| ∈ N+}

be the indices of the data points which are not used for interpolation, and define
w = [wν ]ν∈N+

and y = [yµ]µ∈M. Then, following the derivation of the original AAA
algorithm, the parameters wν , ν ∈ N+, and w∞ are chosen such that the quadratic
form

∥∥w∞y +∆Lw
∥∥2
2

(4.7)

becomes minimal, subject to the constraint

|w∞|2 + ‖w‖22 = 1 ,

where the matrix ∆L is given by

∆L =

[
yµ − yν
zµ − zν

− yµ − y−ν

zµ + zν

]

µ∈M, ν∈N+

.
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In other words, the vector [w∞, wν ]
T
ν∈N+

is a singular vector associated with the
smallest singular value of the matrix

W =
[
y ∆L

]
.

The list of indices in N+, which determines the set of data points that are used for
interpolation rather than approximation, is determined by a greedy iteration in the
AAA scheme: Starting with an empty set N+ = ∅, the absolute value of an index ν,
for which the current residual |yν −R(zν)| is largest, is appended after each iteration
to the list of indices in N+, until, eventually, all the residuals are below the tolerance τ
of (4.4).

The poles of the final approximation R of (4.6) are the finite eigenvalues λ ∈ C

of the matrix pencil



w∞ 1 · · · 1 1 · · · 1

w Z − λI 0

−w 0 −Z − λI



,

where Z is the diagonal matrix with the interpolation grid points zν, ν ∈ N+, on the
diagonal. This can readily be checked by computing the corresponding eigenvector.
Of course, there is no guarantee that these poles are located on the unit circle, and
we discard poles as spurious ones, when they fail to belong to the annulus

0.95 < |z| < 1.05 .

Example 4.2. To illustrate the method we consider an incident time-harmonic
plane wave with direction of propagation (1, 0) in a homogeneous medium with wave
number k = 1, which is scattered by two objects with a diameter of about one, namely
a kite located at (10, 10) and a disk at (6,−10): The kite is a sound-soft scatterer,
whereas the disk is such that the total field satisfies a homogeneous impedance condi-
tion. We simulate the far field pattern of the scattered wave with a Nyström method
as described in [3, 18], using an equidistant grid on S1 with 128 points. The scattered
wave u = u(x) solves the source problem (2.1) for some (distributional) source f
supported on the boundaries of the two scatterers. In fact, since the scatterers are
relatively small compared to the wave length of the incident field, the associated far
field pattern can be approximated by the far field radiated by two point-sources sup-
ported near the centers of the two scatterers as in (3.15) rather well (see, e.g., [9,
Thm. 3.1]).

The absolute values of the Fourier coefficients of the far field of the corresponding
scattered wave have already been displayed in Figure 2.1. Figure 4.1 shows the two
scatterers and the disk with radius r∗ ≈ 11.26, which is the minimal distance of the
scatterers from the origin. Accordingly, we use seven Fourier coefficients an (corre-
sponding to N = 3 = ⌊

√
11.26 ⌋ in accordance with (3.16)) for the Laurent polynomial

ϕN ; they belong to the oscillating regime of the Fourier coefficients as indicated by
the dotted red bars in Figure 2.1.

With the estimated value ∆e = 10−3 in (4.2) the radius (4.1) of the circle, on
which ϕN is being evaluated, has been determined to be ρ∗ ≈ 3.33 by (4.1). We use
2M = 100 data pairs on this circle as input for the modified AAA algorithm. The
tolerance τ in the AAA algorithm is 7.18 · 10−5 according to (4.4). The greedy AAA
iteration determines a rational approximation with four poles.
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Fig. 4.1: Illustration of the basic algorithm for Example 4.2.

Figure 4.1 shows these poles marked as black crosses, which are all close to the
unit circle. According to the theory the scatterers should be located along the red
lines which depict all complex numbers which share the polar angle with one of the
four poles. In this particular example these two lines indeed (almost) intersect the
two scatterers. ⋄

5. Moving around. To get further information about the location of the sources
we can utilize another important property of the inverse source problem, that has,
e.g., been advocated by Kusiak and Sylvester in [21] (see also [22, 27]), and that
has already been employed in [14] as well. Assume that we shift the origin of the
coordinate system to some arbitrary point c ∈ R2, or rather, keep the origin and
move the source f , so that we consider the radiating solution uc of the Helmholtz
equation (2.1) with f replaced by the (virtual) source fc given by

fc(y) = f(c+ y) , y ∈ R
2 .

A straightforward computation reveals that this solution has the far field pattern

u∞c (x̂) = eikc·x̂u∞(x̂) , x̂ ∈ S1 , (5.1)

which is immediately available from the given data u∞ – and so are its Fourier coef-
ficients

acn =
∑

m∈Z

im−nei(m−n) arg cJm−n(k|c|)am , n ∈ Z .

Remark 5.1. Assuming that f is supported in a disk of radius R > 0, and
that we can only observe the nonevanescent part of its radiated far field u∞, we have
argued in Remark 2.1 that 2Ω∗ + 1 Fourier coefficients of the far field pattern for
some Ω∗ & kR suffice to capture all the information from u∞. In our numerical
examples below we will simulate the far field patterns on a sufficiently fine grid to be
able to compute these Fourier coefficients with satisfactory accuracy. According to
the Shannon sampling theorem, cf., e.g., Natterer and Wübbeling [25, p. 67], this is
the case if our equidistant angular grid has at least 2Ω∗ grid points.

Depending on the shift parameter c in (5.1), the radius Rc of the smallest disk
centered at zero that contains the support of the shifted source fc might be signifi-
cantly larger than R. As a consequence, the number 2Ωc

∗ + 1 of Fourier coefficients
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with Ωc
∗ & kRc that are required to correctly represent the radiated far field u∞c ,

might be significantly larger than the number of Fourier coefficients which are avail-
able from our simulated far field data. However, since the Fourier coefficients of the
original far field are essentially zero for |n| > Ω∗ we can employ the approximation

acn ≈
Ω∗∑

m=−Ω∗

im−nei(m−n) arg cJm−n(k|c|)am , n = −Ωc
∗, . . . , Ω

c
∗ ,

to determine the Fourier coefficients of u∞c to sufficient accuracy. ⋄
When we apply the algorithm developed in the previous sections to the far field

pattern u∞c we obtain lines which connect the virtual origin c with approximate loca-
tions of individual source components. Repeating this procedure for many different
virtual origins c ∈ Λ, where Λ ⊆ R2 denotes some suitable grid of points, gives a
large number of lines, each of which should intersect or be at least close to one source
component.

Each line ℓ recovered by the scheme outlined above can be represented in the
form

ℓ(ω, s) := {sω + tω⊥
∣∣ t ∈ R} ,

parametrized by a normal vector ω ∈ S1 and the associated signed distance s ∈ R

from the true origin. Next, we consider the grid

Σ := {(ωh, sl)
∣∣ h = 0, . . . , H − 1 , l = −L, . . . , L} ⊆ S1 × R (5.2)

with

ωh = (cos(h∆ω), sin(h∆ω)) and sl = l∆s ,

where ∆ω = π/H and ∆s = d/(L
√
2) for some H,L ∈ N. Here d > 0 denotes the

side length of a square region of interest, in which we want to reconstruct the support
of the sources. For each line ℓ(ω, s) that is recovered by the AAA algorithm we first
determine the nearest normal direction ωh∗

in the grid Σ from (5.2), i.e.,

|ω − ωh∗
| = min{|ω − ωh|

∣∣ h = 0 . . . , H − 1} ,

and then we define a matrix Rℓ(ω,s) ∈ R(2L+1)×H with entries

R
ℓ(ω,s)
l,h =





ε√
2π

e−
1
2
|s−sl|

2ε2 if h = h∗ and l = −L, . . . , L ,

0 else .
(5.3)

A similar Gaussian spreading is often used in nonuniform fast Fourier transforms;
see, e.g., Greengard and Lee [8]. The h∗th column of Rℓ(ω,s) is a discretized one-
dimensional Gaussian with standard deviation 1/ε, and we interpret this as a prob-
ability density describing whether there is a source located along a line orthogonal
to ωh∗

with signed distance sl from the true origin. We further note that the h∗th
column of Rℓ(ω,s) coincides with the h∗th column of the values of the Radon transform
of gε(· − z) on Σ, where

gε(x) =
ε2

2π
e−

1
2
|x|2ε2 , x ∈ R

2 ,
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Fig. 5.1: Geometrical setup of Example 5.3 (left); sinogram from unperturbed
data (right).

is a two-dimensional Gaussian with standard deviation 1/ε and z is any point
on ℓ(ωh∗

, s). Accordingly, when adding up these matrices Rℓ(ω,s) for all lines ℓ(ω, s)
that have been determined by the AAA algorithm for all possible virtual origins c ∈ Λ,
the result should be close to the values on Σ of the Radon transform of some density
function with peaks near the individual supports of the sources and negligible mag-
nitude away from them. Since we have spread every single pole information via the
particular Ansatz (5.3) to neighboring parallel lines, we may further expect that this
density function has an essential bandwidth of roughly 3ε.

We now apply the classical filtered backprojection algorithm for the two-
dimensional Radon transform, as described, e.g., in [25, pp. 81–87], to reconstruct
this density function in order to visualize the support of the sources. The aforemen-
tioned guess 3ε of the bandwidth of this function is used as parameter for the Ram-Lak
filter in this algorithm. Accordingly, [25, p. 86] suggests the sampling conditions

∆s ≤ π

3ε
and ∆ω ≤

√
2

d

π

3ε
(5.4)

for the grid Σ in (5.2) to obtain artifact free reconstructions.
Remark 5.2. We have already mentioned in Remark 3.2 that there are at least

four different ways to define a Laurent polynomial from the given far field data, that
can then be used as input for the AAA algorithm. To symmetrize the use of the
Fourier coefficients and to stabilize the reconstruction algorithm in our numerical
examples below, we run the AAA algorithm for each virtual origin c ∈ Λ four times
using ϕN from (3.8), ϕ̃N from (3.18) as well as (ϕN + ϕ̃N )/2 and (ϕN − ϕ̃N )/2 as
input data. Each of these four computations typically gives a slightly different set of
lines indicating the directions of the scatterers, when seen from the current virtual
origin. We then simply combine all the reconstructed lines obtained for the four
different versions of the Laurent polynomial into one discrete sinogram by adding up
all associated matrices Rℓ from (5.3) for all virtual origins c ∈ Λ. ⋄

Example 5.3. We continue with Example 4.2, but this time we simulate the far
field pattern of the scattered field on an equidistant grid with just 64 points on S1,
which is sufficient according to Remark 2.1 and Example 2.2. We choose 900 virtual
origins that are equiangularly distributed on a grid Λ on five circles around the true
origin with radii 25, 26, . . . , 29 as visualized by the red crosses in Figure 5.1 (left).
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Fig. 5.2: Reconstruction from unperturbed data in Example 5.3 (left); reconstruction
from noisy data with 5% uniformly distributed relative error (right).

We have already obtained the estimate Rη ≈ 14.72 for the radius of the smallest
disk centered at the origin that contains the scatterers in Example 2.2. Accordingly,
the distance between each virtual origin c ∈ Λ and the scatterers is approximately
bounded from below by |c| − Rη. Therefore, we set N = ⌊(k(|c| − Rη))

1/2⌋ and
use 2N + 1 Fourier coefficients acn of the translated far field u∞c for the correspond-
ing Laurent polynomials ϕN , ϕ̃N , (ϕN + ϕ̃N )/2, and (ϕN − ϕ̃N )/2 for each virtual
origin c ∈ Λ. We choose ∆e = 10−3 for the estimated relative error in (4.2), and we
determine the radius ρ∗ in (4.3) according to (4.1) and the tolerance τ in the AAA
algorithm according to (4.4). As mentioned before, we use 2M = 100 data pairs on
the circle of radius ρ∗ as input for the AAA algorithm.

We take d = 32 for the side length of the region of interest, which is shown as
a dashed square in Figure 5.1 (left). For the other parameters in the rebinning and
filtered backprojection scheme, we use ε = 1.3 and determine ∆s and ∆ω according
to (5.4). The plot in Figure 5.1 (right) shows the resulting sinogram (i.e., the sum of
all matrices Rℓ(ω,s) for all virtual origins and the four realizations of the corresponding
Laurent polynomials). We note that this sinogram consist of 63 rows and 5057 columns
in agreement with (5.4). The reconstruction of the source positions obtained by the
filtered backprojection is shown in Figure 5.2 (left) together with visualizations of the
true locations of the scatterers. Here and in all following examples, negative values
in the reconstruction have been replaced by zero.

We like to elaborate briefly on this sinogram. It is well-known that the Radon
transform sinogram of a point source shows the graph of a shifted sine function with
a certain amplitude; the sinogram of a Gaussian centered at the same point is a ‘sine
ribbon’, i.e., a Gaussian blur in vertical direction of the former graph; see [10]. In the
particular plot in Figure 5.1 one can easily identify two sine ribbons corresponding
to the two source components of our phantom. But it can also be seen that this plot
contains a decent amount of aberrations and outliers, which are due to inaccurate
reconstructions of pole directions due to the AAA algorithm. Aside of this there
are gaps in the two sine ribbons near their crossing points: Apparently the rational
approximations fail to provide accurate pole information, when the two double cones
connecting a virtual origin with the individual source components are close to each
other. In this case the exponential terms associated to these two source components
according to (3.2) might interfere strongly.
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Fig. 5.3: Geometrical setup of Example 5.4 (left); sinogram from unperturbed
data (right).

To study the sensitivity of the reconstruction algorithm with respect to noise
in the data, we repeat the computations but add 5% complex-valued uniformly dis-
tributed relative error to the original far field data. Figure 5.2 (right) shows the
corresponding results. We use the same parameters as before, except for η and ∆e
(which then also implies new values for δ, ρ∗ and τ according to (4.2), (4.1) and (4.4)).
Taking into account the magnitude of the relative data error, we choose η = 2 · 10−3

and ∆e = 0.025. The reconstructions are only slightly worse than those obtained in
the noise free case. ⋄

Example 5.4. In our second example, we add a third scatterer to the scene,
which is a sound-hard ellipse at (−10, 0). We consider again a plane wave incident
field with wave number k = 1 and direction of propagation (1, 0) and simulate the far
field pattern of the scattered wave in the same way as before. The main difference
to Example 5.3 is that we use a different setup for the virtual origins in that we
select 2500 equidistant points on a square cartesian grid Λ with side length 40 as shown
in Figure 5.3 (left). Since we can now no longer bound the distance of the virtual
origins from the scatterers from below, we have to relax the condition (3.16). Instead

we estimate for each virtual origin c ∈ Λ the radius R
(c)
η of the smallest disk centered

at c containing all scatterers by means of (2.5), (2.6), let N = ⌊(kR(c)
η )1/2⌋ − 1, and

use 2N +1 Fourier coefficients acn of the translated far field u∞c for the corresponding
Laurent polynomials. To some extend this is justified by Remark 3.1, and numerical
tests have confirmed that this strategy actually works much better than the circular
grid of virtual origins in Example 5.3 in case of more than two scatterers – as long as
they are sufficiently well separated. We choose ∆e = 10−3 for the estimated relative
error in (4.2), and we determine the radius ρ∗ by (4.1) and the tolerance τ by (4.4).
Again, we use 2M = 100 data pairs on the circle of radius ρ∗ as input for the modified
AAA algorithm.

The region of interest, which is shown as a dashed square in Figure 5.3 (left), and
the other parameters in the rebinning and filtered backprojection scheme remain the
same as in Example 5.3. The corresponding sinogram is shown in Figure 5.3 (right).
The reconstructions of the source positions that we have obtained by the filtered
backprojection is shown in Figure 5.4 (left) together with visualizations of the true
locations of the small scatterers.
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Fig. 5.4: Reconstruction from unperturbed data in Example 5.4 (left); reconstruction
from noisy data with 5% uniformly distributed relative error (right).
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Fig. 5.5: Geometrical setup of Example 5.5 (left); sinogram from unperturbed
data (right).

As in Example 5.3 we repeat the computation for noisy far field data con-
taining 5% uniformly distributed relative additive error. Accordingly, we choose
η = 2 · 10−3 and ∆e = 0.025 as in the noise case of Example 5.3, and otherwise
we use the same parameters as before. The results are shown in Figure 5.4 (right).
The reconstructions of the additional circular scatterer and of the kite-shaped scat-
terer are less pronounced than in the noise free case, but it still seems possible to
correctly guess the locations of the three scatterers. ⋄

Example 5.5. In our final example we consider three larger scattering objects:
two sound-hard obstacles at (10, 10) and (8,−10), and a sound-soft obstacle at (−8, 0)
as shown in Figure 5.5 (left). We consider a plane wave incident field with wave
number k = 1 and direction of propagation (1, 0) and simulate the far field pattern of
the scattered field on the same equidistant grid with 64 points on S1 as before. Here
we are no longer close to the point-scatterer regime, because the wavelength λ ≈ 6.28
is comparable to the diameter of the obstacles. We use the same grid for the virtual
origins, the same region of interest for the reconstructions, and the same parameters
for the reconstruction algorithm as in Example 5.4. The corresponding sinogram is
shown in Figure 5.5 (right).
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Fig. 5.6: Reconstruction from unperturbed data in Example 5.5 (left); reconstruction
from noisy data with 5% uniformly distributed relative error (right).

The reconstructions of the source locations obtained from unperturbed data, and
from noisy far field data containing 5% uniformly distributed relative additive error are
shown together with visualizations of the true locations of the scatterers in Figure 5.6.
Although the shape of the scatterers cannot be inferred from these reconstructions,
even with 5% noise on the data the correct number and the approximate locations of
the scatterers can easily be depicted. ⋄

6. Conclusions. We have developed a new method to reconstruct the number
and the positions of a few well-separated sources or scatterers from far field observation
of a single radiated or scattered wave. The main attraction of this algorithm is that
it uses only the few largest coefficients in the Fourier spectrum corresponding to the
Fourier modes of low order. This part of the data set is arguably the least susceptible
to measurement errors and noise.

The reconstruction method is based on rational approximation, and we utilize
the poles of the corresponding rational functions to determine a sinogram of a density
function which exhibits peaks near the individual supports of the sources or scatterers.
These peaks are the more pronounced the better the far field can be approximated by
the far field radiated by a few well-separated point sources. The well-known filtered
backprojection algorithm from computerized tomography can be employed to visualize
these peaks.

While rational approximation in itself is very powerful, very little is known about
the resulting poles and the information they carry. But according to our limited
numerical examples, the variant of the AAA algorithm which we employ, provides
enough pole information to reconstruct three well-separated scatterers and seems to
tolerate a decent amount of noise in the data. We have also observed numerically
(not shown in the article) that the method can handle more than three scatterers,
when they are farther than a few wave lengths apart from each other. However, the
information contained in reconstructions obtained by this method, when the sources
or scatterers have larger supports, is limited.

Our method requires to choose a number of parameters, and we have provided a
careful analysis to guide these choices. We warn however that selecting those param-
eters wrong typically results in failure.
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Appendix. Here we provide an error bound for the particular approximations
of the Bessel functions which form the basis of our numerical approach.

The Bessel functions Jn(x) of the first kind of order n ∈ Z with argument x > 0
can be written as

Jn(x) =

√
2

πx

(
cos
(
x− π

2
n− π

4

)
Pn(x) − sin

(
x− π

2
n− π

4

)
Qn(x)

)

for some auxiliary functions Pn and Qn (see Watson [30, Secs. 7.2–7.3]). The latter
possess asymptotic representations

Pn(x) ∼
∞∑

m=0

(−1)m(n, 2m)

(2x)2m
and Qn(x) ∼

∞∑

m=0

(−1)m(n, 2m+ 1)

(2x)2m+1
(A.1)

as x→ ∞, where

(n, ν) :=
(4n2 − 12)(4n2 − 32) · · · (4n2 − (2ν − 1)2)

22νν!
. (A.2)

Truncating the asymptotic representations for Pn and Qn from (A.1) after p ≥ 1 and
q ∈ {p− 1, p} terms, we can approximate Pn and Qn by

P (p)
n (x) :=

p−1∑

m=0

(−1)m(n, 2m)

(2x)2m
and Q(q)

n (x) :=

q−1∑

m=0

(−1)m(n, 2m+ 1)

(2x)2m+1
,

respectively, which gives the aforementioned approximation

J (p,q)
n (x) :=

√
2

πx

(
cos
(
x− π

2
n− π

4

)
P (p)
n (x) − sin

(
x− π

2
n− π

4

)
Q(q)

n (x)
)

(A.3)

of Jn(x). This approximation is well-known and recommended for large arguments,
cf., e.g., [5, 10.17]. In the following auxiliary result we provide a quantitative error
estimate.

Lemma A.1. Let p ∈ N and q ∈ {p− 1, p}, and N ∈ N with N > 2p. Then, the

approximation (A.3) satisfies

∣∣Jn(x)− J (p,q)
n (x)

∣∣ ≤
√

2

πx

1

(p+ q)!

(N2

2x

)p+q

eN
2/(2x) (A.4)

for every x > 0 and every n ∈ Z with |n| < N .

Proof. Consider first the case that 0 ≤ n < N . Since p∗ := ⌊N/2⌋ and
q∗ := ⌈N/2⌉ − 1 satisfy 2p∗ ≥ N − 1 ≥ n and 2q∗ ≥ N − 2 ≥ n − 1 the remain-
ders

Rn(x, p∗) :=
∣∣Pn(x) − P (p∗)

n (x)
∣∣ and Sn(x, q∗) :=

∣∣Qn(x) −Q(q∗)
n (x)

∣∣

are no larger than the first neglected term of the respective asymptotic series (A.1)
according to [30, p. 205–206]. It thus follows that, for all p as in the lemma,

Rn(x, p) ≤
∣∣Pn(x)− P (p∗)

n (x)
∣∣ +

∣∣P (p∗)
n (x) − P (p)

n (x)
∣∣ ≤

p∗∑

m=p

|(n, 2m)|
(2x)2m

,
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because 2p∗ ≥ N − 1 ≥ 2p by our choice of N . By virtue of (A.2)

|(n, 2m)| = |4n2 − 1||4n2 − 32| · · · |4n2 − (4m− 1)2|
24m(2m)!

≤ 1

(2m)!

(4N2

4

)2m
,

for every m ≤ p∗, and we therefore conclude that

Rn(x, p) ≤
p∗∑

m=p

1

(2m)!

(N2

2x

)2m
≤

∞∑

m=p

1

(2m)!

(N2

2x

)2m
. (A.5)

As q ≤ p < N/2 ≤ q∗+1 we also have q ≤ q∗, and hence we conclude similar to above
that

Sn(x, p) ≤
∣∣Qn(x)−Q(q∗)

n (x)
∣∣ +

∣∣Q(q∗)
n (x) −Q(q)

n (x)
∣∣

≤
q∗∑

m=q

|(n, 2m+ 1)|
(2x)2m+1

≤
∞∑

m=q

1

(2m+ 1)!

(N2

2x

)2m+1

.
(A.6)

For the final inequality in (A.6) take note that 4q∗ + 1 ≤ 4N−1
2 + 1 ≤ 2N .

Using (A.5) and (A.6), and taking into account that q ∈ {p− 1, p}, which implies
that min{2p, 2q + 1} = p+ q, we see that the total error (A.4) is bounded by

∣∣Jn(x)− J (p,q)
n (x)

∣∣ ≤
√

2

πx

∞∑

m=p+q

1

m!

(N2

2x

)m

=

√
2

πx

(
eN

2/(2x) −
p+q−1∑

m=0

1

m!

(N2

2x

)m)

≤
√

2

πx

1

(p+ q)!
eN

2/(2x)
(N2

2x

)p+q

,

where we have used Taylor’s theorem in the final step. Thus, (A.4) holds true
for 0 ≤ n < N .

For negative n ∈ Z the statement now follows immediately from the fact

that J−n(x) = (−1)nJn(x) and J
(p,q)
−n = (−1)nJ

(p,q)
n (x) for every n ∈ Z.

Consequently, the truncated asymptotic representations J
(p,q)
n (x)

with q ∈ {p− 1, p} in (A.3) are good approximations of the Bessel functions
for indices n which satisfy

|n| ≤ N for some N .
√
x .

In this regime, even small values of p and q often yield satisfactory approximations:
For instance, when N = ⌊√x⌋ > 2 then the error bound (A.4) gives

∣∣Jn(x) − J (1,1)
n (x)

∣∣ ≤ 0.21

√
2

πx
and

∣∣Jn(x)− J (2,2)
n (x)

∣∣ ≤ 0.0043

√
2

πx

for |n| < N . As illustrated in Figure A.1 for two different values of x, the true
errors are significantly smaller because of the alternating signs of the terms in the
expansion. In fact, the values of Jn(x) are well matched within the range |n| . √

x,
which is indicated by the dotted vertical lines in these plots.
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Fig. A.1: Bessel function Jn(x) (blue circles) together with their approxima-

tions J
(p,q)
n (x) as functions of n, using p = q = 1 (red dots) and p = q = 2 (black

crosses), respectively; x = 5 in the left hand plot and x = 100 in the right hand plot;
the dotted bars indicate the values of ±√

x.
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