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Abstract

We consider semilinear Friedrichs systems which model high-frequency wave propagation in disper-
sive media. Typical solutions oscillate in time and space with frequency of O(ε−1) and have to be
computed on time intervals of length of O(ε−1), where ε ≪ 1 is a small positive parameter. For
such problems, we present an approach which combines analytical approximations with tailor-made
time integration. First, we replace the original problem by a fine-tuned modification of the classical
slowly varying envelope approximation and prove that the corresponding error is only of O(ε2). The
resulting system of partial differential equations has the advantage that solutions do not oscillate
in space, but still in time. For this system, we devise a novel time integrator and prove first-order
convergence uniformly in ε. Essential to this is the careful analysis of interactions between oscillatory
and non-oscillatory parts of the solution, which are identified by suitable projections.

Keywords: nonlinear Friedrichs system, high-frequency wave propagation, spatio-temporal oscillations,
slowly varying envelope approximation, time integration, error bounds
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1 Introduction

The construction and analysis of numerical methods for differential equations is particularly difficult if
the solution oscillates rapidly in time. With standard schemes, an acceptable accuracy can most often
only be achieved if the step size is small compared to the inverse of the highest frequency. This means
that the oscillations have to be resolved by a very fine discretization, which causes huge computational
costs.

In many cases, however, the efficiency can be substantially improved by exploiting the particular structure
of the problem in the construction of the method. In recent years, such tailor-made methods for nonlinear
differential equations with highly oscillatory time evolution were proposed and analyzed, e.g., in [1, 2, 6, 9,
10, 11, 12, 13, 16, 18, 19, 20, 22, 23, 24, 27, 26, 30, 33, 34], and many other papers. In this work, we present
a new approach for systems of partial differential equations (PDEs) which model high-frequency wave
propagation in nonlinear dispersive media. This is particularly challenging, because here the solution
oscillates both in time and space, which is not the case in the references cited above.

Our goal is to approximate the vector-valued solution u : [0, tend/ε]×Rd → Rm of the semilinear Friedrichs
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system

∂tu+Au+
1

ε
Eu = εT (u, u, u), t ∈ (0, tend/ε], x ∈ Rd, (1.1a)

u(0, x) = eiκ·x/εp0(x) + e−iκ·x/εp0(x) (1.1b)

with a small parameter ε > 0 and differential operator

A =

d∑
j=1

Aj
∂

∂xj

with symmetric matrices A1, . . . , Ad ∈ Rm×m. E ∈ Rm×m is skew-symmetric and T : Rm ×Rm ×Rm →
Rm trilinear. The right-hand side of the initial condition (1.1b) is a wave packet with a smooth envelope
function p0 : Rd → Cm and a fixed, given wave vector κ ∈ Rd \ {0}. A well-known example for this
type of differential equation is the Maxwell–Lorentz system, which describes the propagation of light in
a dispersive Kerr medium, cf. [14, 15, 17, 28, 29] and Section 4.3 below. In order to observe diffractive
effects, this PDE system has to be solved on time intervals which are so long that the approximations of
geometric optics do not apply.

The problem involves multiple scales in time and space characterized by the parameter 0 < ε≪ 1, which
appears in the PDE, in the initial data, and in the time interval. Owing to the special form of the
initial data and the PDE, the solution is typically a wave packet with a carrier wave, oscillating with
frequency proportional to ε−1, and modulated by a smooth, non-oscillatory envelope which moves with
group velocity of O(1). Because of the oscillatory behavior in time and space, the efficient and accurate
approximation of u is a very challenging task for the reasons already mentioned above, but the fact that
(1.1a) has to be solved numerically on a time interval of length of O(ε−1) makes things even worse1.
An additional difficulty is the fact that in the term 1

εEu in (1.1a), which causes oscillations in time, E
is not a scalar, but a matrix with several different eigenvalues. In general, the operators A and 1

εE do
not commute, which means that some of the techniques used, e.g., in [2, 6, 11], are not suitable for our
problem.

To tackle these challenges we combine analytical and numerical approximations. We cope with the spatial
oscillations with the well-known slowly varying envelope approximation (SVEA) defined by

ũ(t, x) = ei(κ·x−ωt)/εp(t, x) + e−i(κ·x−ωt)/εp(t, x), (1.2)

[4, 14, 29, 32]. The number ω ∈ R is chosen in such a way that the pair (ω, κ) fulfills the dispersion
relation (cf. Section 2.1), and p is the solution of a PDE called the envelope equation; cf. (2.5) below.
Under a number of assumptions it was recently shown in [3] and [4] that the SVEA (1.2) approximates
the solution u of the original problem (1.1) up to an error of O(ε2) in L∞(Rd) and on long time intervals
[0, tend/ε]. The advantage is that p is free from ε-induced oscillations in space, such that the space
discretization of the envelope equation can be carried out with an ε-independent number of grid points.
In contrast, time discretization is still a highly nontrivial problem, because the solution p oscillates in
time with the same frequency as u and has to be approximated on the same long time interval [0, tend/ε].
Our approach is based on two steps. First, we replace the envelope equation by a new PDE, called the
reduced envelope equation (REE), which has an additional advantage over the envelope equation when it
comes to numerical approximation. After changing to co-moving coordinates, we devise a tailor-made,
uniformly accurate integrator for the REE in the second step. Both steps require a careful analysis of
interactions between oscillatory and non-oscillatory parts of the solution, which are identified by suitable
projections. Substituting the numerical solution of the REE into the SVEA approximates the solution
of the semilinear Friedrichs system up to an error of O(τ + ε2) in L∞(Rd), where τ is the step size. To
the best of our knowledge, our approach is the first which achieves this accuracy with a number of time
steps and grid points independent of the critical parameter ε. For nonlinearly polarized solutions (i.e.
with initial data different from (1.1b)) higher-order approximations were recently constructed in [5].

1In Section 3.1 we will rescale time in such a way that computations only have to be made on [0, tend]. However, this
rescaling does not make the problem easier, because in the new variables the frequency of the temporal oscillations is
proportional to ε−2 instead of ε−1.
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Outline of the paper. In the next section, we specify the problem setting and the analytical frame-
work. Then, we introduce the envelope equation, discuss the accuracy of the SVEA, and we show that
this accuracy does not deteriorate if the envelope equation is replaced by the REE. In Section 3, we
construct an uniformly accurate time integrator for the REE, and we prove an error bound for the time
discretization. Up to this point, the time integrator is stated in a compact but somewhat abstract form.
In Section 4, we explain how this method can be turned into an implementable algorithm, which we apply
to a one-dimensional version of the Maxwell–Lorentz system. The numerical examples corroborate the
error bounds and illustrate the advantageous properties of our approach. Throughout the paper, we focus
on the discretization in time, but in Section 4.2 we sketch how the space discretization can be carried
out.

Notation. In the following the Euclidean scalar product of vectors v1, v2 ∈ Cm is represented by
v1 · v2 = v∗1v2. The q-norm on Cm or the induced matrix norm are both denoted by | · |q. The letter I
marks the identity matrix or identity operator, and i is the imaginary unit. For functions f = f(t, x) that
depend on time and space, we denote the mapping x 7→ f(t, x) by f(t) rather than f(t, ·). In a similar

manner, for the spatial Fourier transform f̂(t, k) of such a function, the dependence on k is not explicitly
specified. To keep the notation short, we write L1 and L∞ instead of L1(Rd,Cm) and L∞(Rd,Cm),
respectively. All constants C may depend on tend, but not on ε, the step size τ , nor on the number of
time steps. Moreover, the values of these constants may vary from one step to the next.

2 Problem setting, slowly varying envelope approximation and
reduced envelope equation

2.1 Polarization condition and envelope equation

As mentioned in the introduction, the function p in (1.2) is the solution of the envelope equation. In
order to formulate this PDE, we need some preparation. For α ∈ R and β ∈ Rd we define the Hermitian
matrix

L(α, β) = −αI +A(β)− iE ∈ Cm×m with A(β) =

d∑
j=1

Ajβj . (2.1)

From now on, we fix the wave vector κ ∈ Rd \ {0}, which appears in (1.1b), and we choose ω to be an
eigenvalue of A(κ)− iE. Hence, the kernel of L(ω, κ) is nontrivial, and the pair (ω, κ) is said to fulfill the
dispersion relation.

Assumption 2.1 (Polarization condition)
The initial data in (1.1b) have the property that

p0(x) ∈ ker
(
L(ω, κ)

)
for almost all x ∈ Rd. (2.2)

Remark 2.2
This assumption was also made, e.g., in [3, 4, 14, 29]. Our results could also be extended to initial

data of the form p0 = p
(0)
0 + εp

(1)
0 with p

(0)
0 ∈ ker

(
L(ω, κ)

)
, but since ε-dependent initial data makes the

formulation more involved, we restrict ourselves to (2.2).

Henceforth, we consider the trilinear extension of the real nonlinearity T : Rm × Rm × Rm → Rm to
Cm ×Cm ×Cm and denote this extension again by T . Moreover, we define the symmetrized nonlinearity

T sym : Cm × Cm × Cm → Cm, (2.3a)

T sym(f1, f2, f3) := T (f1, f2, f3) + T (f1, f2, f3) + T (f1, f2, f3). (2.3b)
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If f1 = f2 = f3 = f , then we write T sym(f) instead of T sym(f, f, f). By definition, it follows that

T sym(g1 + g2, f2, f3) = T sym(g1, f2, f3) + T sym(g2, f2, f3), (2.4a)

T sym(f1, g1 + g2, f3) = T sym(f1, g1, f3) + T sym(f1, g2, f3), (2.4b)

T sym(f1, f2, g1 + g2) = T sym(f1, f2, g1) + T sym(f1, f2, g2). (2.4c)

Since (2.3b) involves complex conjugation of different arguments, however, T sym is only real -trilinear: for
every real c ∈ R we have

T sym(cf1, f2, f3) = T sym(f1, cf2, f3) = T sym(f1, f2, cf3) = c T sym(f1, f2, f3)

for all f1, f2, f3 ∈ Cm, but this is not true if c ∈ C \ R is complex.

Substituting the SVEA (1.2) into (1.1) and discarding higher harmonics yields the envelope equation

∂tp+
i

ε
L(ω, κ)p+Ap = εT sym(p), t ∈ (0, tend/ε], x ∈ Rd (2.5a)

with initial condition

p(0, x) = p0(x), (2.5b)

cf. [4, 14, 29, 32]. In contrast to (1.1b), the highly oscillatory phase eiκ·x/ε has been eliminated from
the initial data (2.5b), and thus the solution of the envelope equation (2.5a) does not oscillate in space
any more. But since the term i

εL(ω, κ)p causes rapid oscillations in time, solving (2.5) with standard
methods would still require a tiny step size and hence unacceptable numerical costs.

2.2 Analytical setting

Recall that the Wiener algebra of vector-valued functions is the space

W =
{
f ∈

(
S ′(Rd)

)m
: f̂ ∈ L1

}
, ∥f∥W = ∥f̂∥L1 =

∫
Rd

|f̂(k)|2 dk, (2.6)

where f̂ = Ff denotes the Fourier transform

(Ff)(k) = (2π)−d/2

∫
Rd

f(x)e−ik·x dx

of f . For every s ∈ N0 the space

W s = {f ∈W : ∂αf ∈W for all α ∈ Nd
0, |α|1 ≤ s},

∥f∥W s =
∑

|α|1≤s

∥∂αf∥W .

is a Banach algebra with continuous embedding W ↪→ L∞, cf. [14, Proposition 1] and [29, Proposition
3.2].

For every c1, c2 ∈ R the operator

ic1L(ω, κ) + c2A : W 1 →W

generates a strongly continuous group (exp(t[ic1L(ω, κ) + c2A]))t∈R on W defined by

F
(
exp

(
t[ic1L(ω, κ) + c2A]

)
f
)
(k) = exp

(
ti[c1L(ω, κ) + c2A(k)]

)
f̂(k), (2.7)

where A(k) is the matrix defined in (2.1). Note that A(ik) = iA(k). The exp(. . .) on the right-hand side
is the standard matrix exponential function. The fact that [c1L(ω, κ) + c2A(k)] is Hermitian for every
k ∈ Rd implies that ∣∣∣exp(ti[c1L(ω, κ) + c2A(k)]

)∣∣∣
2
= 1
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and hence that ∥∥∥exp(t[ic1L(ω, κ) + c2A]
)∥∥∥

W s
= 1, s ∈ N0. (2.8)

Since T is trilinear and W is an algebra, there is a constant CT such that

∥T (f1, f2, f3)∥W ≤ CT

3∏
i=1

∥fi∥W for all f1, f2, f3 ∈W. (2.9)

For j ∈ {1, . . . , d} we introduce the Fourier multiplier (Dj f̂)(k) = ikj f̂(k), such that by definition

F(∂jf) = Dj f̂ and, e.g.,

∥f∥W 1 = ∥f̂∥L1 +

d∑
j=1

∥Dj f̂∥L1 . (2.10)

Local wellposedness in W s of the Friedrichs system (1.1) on long time intervals [0, tend/ε] can be shown
with standard arguments.

The matrix L(α, β) defined in (2.1) is of special interest, because it appears in the envelope equation
(2.5) and in the polarization condition (Assumption 2.1). From now on, we assume the following.

Assumption 2.3

(i) The matrix L(3ω, 3κ) is regular and has no common eigenvalues with L(ω, κ).

(ii) The matrix L(0, β) has a smooth eigendecomposition in the sense that the eigenvalues ωℓ(β) and
the corresponding eigenvectors ϕℓ(β) can be chosen in such a way that

ωℓ ∈ C∞(Rd \ {0},R) and ϕℓ ∈ C∞(Rd \ {0},Cm) for all ℓ = 1, . . . ,m.

With no loss of generality, we assume that for every β the eigenvectors are pairwise orthogonal and
normalized with respect to the Euclidean norm | · |2.

(iii) The eigenvalues ωℓ(β) of L(0, β) are globally Lipschitz continuous: there is a constant C such that

|ωℓ(β̃)− ωℓ(β)| ≤ C|β̃ − β|1 for all β̃, β ∈ Rd.

(iv) Let m0 ∈ {1, . . . ,m − 1} be the dimension of ker(L(ω, κ)). We always choose the enumeration of
the eigenvalues in such a way that

ω = ωℓ(κ) for ℓ = 1, . . . ,m0. (2.11)

(v) The eigenvalue ω = ω1(κ) = . . . = ωm0(κ) is bounded away from the other eigenvalues: There is a
constant C such that

|ω − ωℓ(β)| ≥ C for all β ∈ Rd and ℓ = m0 + 1, . . . ,m.

These assumptions are fulfilled, e.g., in case of the Maxwell–Lorentz system if ω is the largest or smallest
eigenvalue; cf. [14, Example 3] and [4, Remark 2.4].

For fixed ω, κ and a vector θ ∈ Rd we denote the eigenvalues of L(ω, κ+ θ) by λℓ(θ) and the associated
eigenvectors by ψℓ(θ). These eigenvalues and eigenvectors will be used in Sections 2.3 and 4. Since
L(ω, κ + θ) = −ωI + L(0, κ + θ) by definition, it follows that λℓ(θ) = ωℓ(κ + θ) − ω and ψℓ(θ) =
ϕℓ(κ + θ). Moreover, (2.11) implies that λℓ(0) = 0 for ℓ = 1, . . . ,m0, and that {ψ1(0), . . . , ψm0(0)} is
an orthonormal basis of ker(L(ω, κ)).
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2.3 Frequency-dependent projection and accuracy of the slowly varying en-
velope approximation

Our approach to solving the envelope equation (2.5) is based on the analysis carried out in [3, 4]. For
the convenience of the reader, we briefly summarize the main results. Henceforth, we will always assume
that the initial data p0 are in W s with s = 1 or s = 2. With the classical fixed-point argument, it can be
shown that there is a tend > 0 such that a unique and uniformly bounded classical solution

p ∈ C([0, tend/ε],W
1) ∩ C1([0, tend/ε],W ), (2.12a)

sup
t∈[0,tend/ε]

∥p(t)∥W 1 ≤ C for all ε ∈ (0, 1] (2.12b)

of (2.5) with C independent of ε exists. If p0 ∈W 2, then we even have

p ∈ C([0, tend/ε],W
2) ∩ C1([0, tend/ε],W

1) ∩ C2([0, tend/ε],W ) (2.13a)

sup
t∈[0,tend/ε]

∥p(t)∥W 2 ≤ C for all ε ∈ (0, 1], (2.13b)

cf. [14, Lemma 1], [3, Lemma 3.6.1], and [4, Lemma 2.2].

Before we discuss the properties of the SVEA and the envelope equation, we have to introduce some
notation. Let2

Pε : L
1 → L1, f̂(k) 7→

m0∑
ℓ=1

ψℓ(εk)ψ
∗
ℓ (εk)f̂(k) (2.14)

be the pointwise projection of f̂ ∈ L1 in Fourier space onto the first eigenspace of L(ω, κ+εk) and denote
the projector onto the orthogonal complement by P⊥

ε = I − Pε. In [14, Lemma 3] and [4, Section 3] the
following bounds were shown.

Proposition 2.4
Let p be the solution of (2.5) with initial data p0, and suppose that Assumptions 2.1 and 2.3 hold.

(i) If p0 ∈W 1, then there is a constant C > 0 such that

sup
t∈[0,tend/ε]

∥P⊥
ε p̂(t)∥L1 ≤ Cε (2.15)

for all ε ∈ (0, 1].

(ii) If in addition p0 ∈W 2, then there is a constant C > 0 such that

sup
t∈[0,tend/ε]

∥DjP⊥
ε p̂(t)∥L1 ≤ Cε (2.16)

for all ε ∈ (0, 1] and every j ∈ {1, . . . , d}.

According to (2.10) the bounds (2.15) and (2.16) imply that ∥F−1(P⊥
ε p̂(t))∥W 1 = O(ε), which means

that the projected part P⊥
ε p̂ of the solution of (2.5) remains small even on long time intervals. This

property plays a crucial role in our approach.

With Proposition 2.4 the following error bound for the SVEA was proved in [4, Theorem 4.3] and similar
in [3, Theorem 4.3.4].

Theorem 2.5 (Error bound for the SVEA)
Let p0 ∈ W 2 and let u be the solution of (1.1). Let p be the solution of the envelope equation (2.5) and
let ũ be the approximation defined in (1.2). Under Assumptions 2.1 and 2.3 there is a constant C such
that

sup
t∈[0,tend/ε]

∥u(t)− ũ(t)∥W ≤ Cε2, (2.17)

sup
t∈[0,tend/ε]

∥u(t)− ũ(t)∥L∞ ≤ Cε2. (2.18)

2We write f̂ instead of f , because later the function will be the Fourier transform of f ∈ W .
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Theorem 2.5 suggests to approximate the solution of the Friedrichs system (1.1) by solving the envelope
equation (2.5) numerically and then replacing p in the SVEA (1.2) by its numerical approximation.
Then, the total error consists of the a priori error of O(ε2) from (2.18) plus the numerical error caused
by approximating p numerically. This is a viable approach, but it turns out that for the construction of a
numerical method it is more advantageous to replace the envelope equation by yet another PDE which is
more suitable for time integration, and which yields the same a priori error; cf. Remark 4.1 below. This
PDE, called the reduced envelope equation, is derived in the next subsection.

2.4 Frequency-independent projection and reduced envelope equation

With the projection Pε the Fourier transform p̂ of the solution p of the envelope equation can be de-
composed into the two parts Pεp̂ and P⊥

ε p̂. It was shown in [14, Lemma 2] and [4, Lemma 3.5] that
Pεp̂ is “essentially non-oscillatory” in the sense that the first two time derivatives are uniformly bounded
in ε. Hence, the oscillatory behavior of p comes only from the part P⊥

ε p̂, which, however, is small by
Proposition 2.4. Our ansatz for the derivation of the new PDE is, roughly speaking, to omit as many
oscillatory but small parts as possible in the nonlinearity at the cost of an error of O(ε2). After denoting
the “smooth” and the oscillatory parts of p by psmo = F−1(Pεp̂) and posc = F−1(P⊥

ε p̂), respectively, we
infer from (2.4) and (2.9) that formally

T sym(p) = T sym(p, p, p) = T sym
(
psmo + posc, psmo + posc, psmo + posc

)
= T sym

(
psmo, psmo, psmo

)
+ T sym

(
psmo, psmo, posc

)
(2.19)

+ T sym
(
psmo, posc, psmo

)
+ T sym

(
posc, psmo, psmo

)
+O(ε2).

In this representation, the oscillatory part posc appears in at most one of the three components of T sym.
This is an advantage for the time integration, because approximating oscillatory functions is more intricate
than smooth ones. The problem is that the nonlinearity T sym is defined for functions in physical space,
whereas the computation of psmo and posc requires a forward and inverse Fourier transform, because the
projection Pε can only be applied in Fourier space. Unfortunately, this “detour” is not compatible with
the techniques used in the construction of the time integration as presented in Section 3.2 below. For
this reason, we will now consider a similar but frequency-independent projection which has essentially
the same beneficial properties.

Since {ψ1(0), . . . , ψm0
(0)} is an orthonormal basis of ker(L(ω, κ)), it follows that

v 7→ Pv, P =

m0∑
ℓ=1

ψℓ(0)ψ
∗
ℓ (0) ∈ Cm×m (2.20)

is the orthogonal projection from Cm onto the kernel of L(ω, κ). The essential difference between the
projections (2.14) and (2.20) is that P does not depend on ε nor on the frequency k, but only on the
matrix L(ω, κ). Hence, (2.20) can be applied to an arbitrary vector v ∈ Cm, whereas (2.14) is only
defined for a vector-valued function in Fourier space. Of course, P can also be extended to an operator

P : L1 → L1, f̂(k) 7→
m0∑
ℓ=1

ψℓ(0)ψ
∗
ℓ (0)f̂(k) for all k ∈ Rd, (2.21)

which maps functions to functions. Although strictly speaking (2.20) and (2.21) are two different map-
pings, we will denote both with the same symbol P . Below, we will often use that ∥Pf∥W ≤ ∥f∥W and
∥P⊥f∥W ≤ ∥f∥W , which follows by definition.

Our goal is to show that Proposition 2.4 remains true if the frequency-dependent projection Pε is replaced
by P . As a first step, we quote the following estimate for the difference between Pε and P .

Lemma 2.6
Under Assumption 2.3, there is a constant C such that the bound

∥Pεf̂ − P f̂∥L1 ≤ Cε∥f∥W 1

holds for all f ∈W 1 and all ε ∈ (0, 1].
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This result was shown as a part of the proof of Lemma 3 in [14].

With Lemma 2.6 we can now prove the following counterpart of Proposition 2.4.

Corollary 2.7
Let p be the solution of (2.5). Under the assumptions of Proposition 2.4(ii) there is a constant C such
that

sup
t∈[0,tend/ε]

∥∥P⊥p(t)
∥∥
W 1 ≤ Cε

for all ε ∈ (0, 1].

Proof. With I − P = I − Pε + (Pε − P ), Proposition 2.4(i) and Lemma 2.6 imply that

sup
t∈[0,tend/ε]

∥∥P⊥p̂(t)
∥∥
L1 ≤ sup

t∈[0,tend/ε]

∥∥P⊥
ε p̂(t)

∥∥
L1 + sup

t∈[0,tend/ε]

∥(Pε − P )p̂(t)∥L1

≤ Cε+ Cε sup
t∈[0,tend/ε]

∥p(t)∥W 1 .

For every j = 1, . . . , d, we repeat the calculation and use Proposition 2.4(ii) to obtain

sup
t∈[0,tend/ε]

∥∥DjP
⊥p̂(t)

∥∥
L1 ≤ Cε+ Cε sup

t∈[0,tend/ε]

∥p(t)∥W 2 .

Now the assertion follows from the uniform boundedness of ∥p(t)∥W 2 and from the fact that
∥∥P⊥p(t)

∥∥
W 1 =∥∥P⊥p̂(t)

∥∥
L1 +

∑d
j=1

∥∥DjP
⊥p̂(t)

∥∥
L1 .

Lemma 2.8
Let p0 ∈ W 2 and let p be the solution of the envelope equation (2.5). Then, the time derivative of Pp is
uniformly bounded: there is a constant C independent of ε ∈ (0, 1] such that

sup
t∈[0,tend/ε]

∥∂tPp(t)∥W 1 ≤ C.

We omit the proof, because the result can be shown in a similar way as Lemma 2.11 below.

Corollary 2.7 and Lemma 2.8 allow us to split the solution p = Pp+P⊥p of the envelope equation into an
essentially non-oscillatory part Pp and an oscillatory but small part P⊥p. Hence, this decomposition has
the same favorable properties as p = psmo+posc at the beginning of this subsection, but the computational
disadvantages of the latter are now avoided, because no Fourier transform is required.

We are now in a position to replace the envelope equation (2.5a) by a new PDE which is even better
suited for numerical computations, and which does not spoil the accuracy of the SVEA (cf. Theorem 2.5).
For this purpose, we define T sym

perm(f1, f2, f3) to be the sum of T sym evaluated for all permutations of the
arguments, i.e.

T sym
perm(f1, f2, f3) = T sym(f1, f2, f3) + T sym(f1, f3, f2) + T sym(f2, f1, f3) (2.22)

+ T sym(f2, f3, f1) + T sym(f3, f1, f2) + T sym(f3, f2, f1).

With this notation and the decomposition p = Pp+P⊥p, we can represent the symmetrized nonlinearity
in the form

T sym(p) = T sym(Pp+ P⊥p)

= T sym(Pp) +
1

2
T sym
perm(P

⊥p, Pp, Pp) +
1

2
T sym
perm(P

⊥p, P⊥p, Pp) + T sym(P⊥p). (2.23)

Since P⊥p = O(ε) in the sense of Corollary 2.7, we neglect all terms where P⊥p appears in at least two
of the three arguments, as in (2.19). This yields the reduced envelope equation (REE)

∂tq +
i

ε
L(ω, κ)q +Aq = εT sym(Pq) +

ε

2
T sym
perm(P

⊥q, Pq, Pq), t ∈ (0, tend/ε], x ∈ Rd, (2.24a)

q(0, x) = p0(x). (2.24b)
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It can be shown that (2.12) and (2.13) hold true if p is replaced by the solution q of (2.24).

Our next goal is to prove that q approximates p up to an error of O(ε2) in ∥ · ∥W 1 . This means, in
particular, that Theorem 2.5 remains true if we replace p by q in the SVEA (1.2). As a preparation,
we state bounds for the nonlinearities T sym and T sym

perm. If r ∈ N0 and f1, f2, f3, g1, g2, g3 ∈ W r with

Ĉ = max{∥f1∥W r , . . . , ∥g3∥W r}, then (2.9) and (2.4) imply the inequalities

∥T sym(f1, f2, f3)∥W r ≤ C

3∏
i=1

∥fi∥W r , (2.25)

∥T sym(f1, f2, f3)− T sym(g1, g2, g3)∥W r ≤ C

3∑
i=1

∥fi − gi∥W r (2.26)

for the symmetrized nonlinearity, as well as

∥∥T sym
perm(f1, f2, f3)

∥∥
W r ≤ C

3∏
i=1

∥fi∥W r , (2.27)

∥∥T sym
perm(f1, f2, f3)− T sym

perm(g1, g2, g3)
∥∥
W r ≤ C

3∑
i=1

∥fi − gi∥W r , (2.28)

where C depends on CT and Ĉ.

For the proof of the following theorem, we define the abbreviation.

EA (t) := exp (−t(iL(ω, κ) + εA)) . (2.29)

Theorem 2.9
Let p0 ∈ W 2 and suppose that Assumptions 2.1 and 2.3 hold. Then, the difference between the solutions
of (2.5) and (2.24) is bounded by

sup
t∈[0,tend/ε]

∥p(t)− q(t)∥W 1 ≤ Cε2. (2.30)

Proof. Let Cp,q be a constant such that

sup
t∈[0,tend/ε]

∥p(t)∥W 1 ≤ Cp,q, sup
t∈[0,tend/ε]

∥q(t)∥W 1 ≤ Cp,q for all ε ∈ (0, 1]. (2.31)

For every t ∈ [0, tend/ε] Duhamel’s formula yields the representations

p(t) = EA
(
t
ε

)
p0 + ε

t∫
0

EA
(
t−s
ε

)
T sym(p(s)) ds,

q(t) = EA
(
t
ε

)
p0 + ε

t∫
0

EA
(
t−s
ε

) (
T sym(Pq(s)) +

1

2
T sym
perm

(
P⊥q(s), P q(s), P q(s)

))
ds.

Since EA
(
t
ε

)
is an isometry on W 1 for all t ∈ R (cf. (2.8)), it follows from (2.23) that

∥p(t)− q(t)∥W 1

≤ ε

t∫
0

∥∥∥T sym(p(s))− T sym(Pq(s))− 1

2
T sym
perm

(
P⊥q(s), P q(s), P q(s)

)∥∥∥
W 1

ds

≤ ε

t∫
0

∥T sym(Pp(s))− T sym(Pq(s))∥W 1 ds
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+
ε

2

t∫
0

∥∥T sym
perm(P

⊥p(s), Pp(s), Pp(s))− T sym
perm(P

⊥q(s), P q(s), P q(s))
∥∥
W 1 ds

+ ε

t∫
0

∥∥∥∥12T sym
perm

(
P⊥p(s), P⊥p(s), Pp(s)

)
+ T sym(P⊥p(s))

∥∥∥∥
W 1

ds.

For the first term on the right-hand side, (2.26) and (2.31) imply the bound

∥T sym(Pp(s))− T sym(Pq(s))∥W 1 ≤ C1 ∥p(s)− q(s)∥W 1

with a constant C1. For the second term the inequality∥∥T sym
perm(P

⊥p(s), Pp(s), Pp(s))− T sym
perm(P

⊥q(s), P q(s), P q(s))
∥∥
W 1 ≤ C2 ∥p(s)− q(s)∥W 1

follows from (2.28). With (2.27), (2.25), and Corollary 2.7, we can derive the estimate∥∥∥∥12T sym
perm

(
P⊥p(s), P⊥p(s), Pp(s)

)
+ T sym

(
P⊥p(s)

)∥∥∥∥
W 1

≤ C3ε
2

for the last term. By combining these bounds, we obtain the inequality

∥p(t)− q(t)∥W 1 ≤ C3ε
2 + ε(C1 + C2)

t∫
0

∥p(s)− q(s)∥W 1 ds

for the error, and applying Gronwall’s lemma and using that εt ≤ tend proves (2.30).

In the remainder of this subsection, we will show that q has the same properties as p. The following
result is the counterpart of Corollary 2.7.

Corollary 2.10
Let q be the solution of (2.24) with p0 ∈W 2. Under Assumption 2.1 and 2.3 there is a constant C such
that

sup
t∈[0,tend]

∥∥P⊥q(t)
∥∥
W 1 ≤ Cε

for all ε ∈ (0, 1].

Proof. Since ∥∥P⊥q(t)
∥∥
W 1 ≤

∥∥P⊥q(t)− P⊥p(t)
∥∥
W 1 +

∥∥P⊥p(t)
∥∥
W 1

for all t ∈ [0, tend/ε], the assertion follows directly from Theorem 2.9 and Corollary 2.7.

Finally, we prove the counterpart of Lemma 2.8

Lemma 2.11
Let p0 ∈ W 2 and let q be the solution of the REE (2.24). Then, the time derivative of Pq is uniformly
bounded: there is a constant C independent of ε ∈ (0, 1] such that

sup
t∈[0,tend/ε]

∥∂tPq(t)∥W 1 ≤ C.

Proof. We apply P on both sides of (2.24a) and use that PL(ω, κ) = 0 by definition. For every t ∈
[0, tend/ε], this yields

∥∂tPq(t)∥W 1 = ∥PAq(t)∥W 1 + ε ∥PT sym(q(t))∥W 1 +
ε

2

∥∥PT sym
perm(P

⊥q(t), P q(t), P q(t))
∥∥
W 1

≤ C ∥q(t)∥W 2 + Cε ∥q(t)∥3W 1

according to (2.25) and (2.27). Now the assertion follows from the uniform boundedness of q and the fact
that ε ≤ 1.
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The results of this subsection reveal why solving the REE (2.24a) numerically instead of the envelope
equation (2.5a) is more advantageous in spite of the seemingly more complicated nonlinear term. In the
modified nonlinearity on the right-hand side of (2.24a), the first term T sym(Pq) has a bounded time
derivative, and in the second term T sym

perm(P
⊥q, Pq, Pq) the fast part P⊥q of the solution appears in only

one component. This means, that approximating the oscillatory behavior of T sym
perm(P

⊥q, Pq, Pq) is less
involved than for the full nonlinearity T sym(p) = T sym(p, p, p), where all three components oscillate with
frequency of O(ε−1) and interact in a complicated way.

3 Time integration

In the previous section we have shown that the solution u of the semilinear Friedrichs system (1.1) can
be approximated by

ũREE(t, x) = ei(κ·x−ωt)/εq(t, x) + e−i(κ·x−ωt)/εq(t, x), (3.1)

where q solves the REE (2.24). Theorems 2.5 and 2.9 yield the error bound

sup
t∈[0,tend/ε]

∥u(t)− ũREE(t)∥L∞ ≤ Cε2.

In this and the next section, we construct and analyze a novel time integrator which for n ∈ N computes
approximations to q(tn, x) at tn = nτ with a step size τ > 0 and a numerical error of O(τ) in L∞(Rd).
Evaluating (3.1) for t = tn and replacing q(t, x) by the numerical approximation leads to a total error of
O(ε2 + τ) in L∞(Rd).

3.1 Change of variable

For numerical simulations we need to truncate the unbounded spatial domain Rd in a suitable way;
cf. Section 4.2. The solution of the REE is a wave packet which propagates with group velocity cg =
∇κω(κ), such that tracking the solution on the time interval [0, tend/ε] would require a huge computational
domain of size of O(ε−1), roughly speaking. It is much more efficient to transform the REE to co-moving
variables. Moreover, we rescale time in such a way that the evolution is considered on the interval [0, tend]
instead of [0, tend/ε]. The reason is that on an ε-dependent time interval the number of time steps does
not only depend on the step size, but also on ε, and hence the step size alone does not give any information
about the total numerical costs. Moreover, our goal is to construct a uniformly accurate integrator of
order one for the REE, which means that the constant in the error bound must not depend on ε. But
since such an error constant always depends on the length of the time interval, we have to work on the
rescaled time interval [0, tend].

For these reasons, we use the change of variables

x = x− tcg, t = εt ∈ [0, tend], q(t,x) = q(t, x).

Substituting into the REE (2.24) yields that the new function q(t,x) is the solution of

∂tq+
i

ε2
L(ω, κ)q+

1

ε

(
Ax − cg · ∇x

)
q = T sym(Pq) +

1

2
T sym
perm(P

⊥q, Pq, Pq),

q(0,x) = p0(x)

with Ax =
∑d

j=1Aj
∂

∂xj
. However, since the function q(t, x) in the original variables will not appear

again in the remainder of this paper, we can immediately drop the boldface notation and write t, x, q,
A instead of t, x, q, Ax for the sake of simplicity. Note that the choice of variables does not affect the
initial data, because (t,x) = (t, x) for t = 0. Moreover, we will henceforth omit the arguments of L(ω, κ),
because the wave vector κ ∈ Rd \ {0} and the eigenvalue ω(κ) ∈ R are kept fixed from now on. Finally,
we define the new differential operator B = A − cg · ∇. With these changes and conventions, the REE
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takes the new form

∂tq +
i

ε2
Lq +

1

ε
Bq = T sym(Pq) +

1

2
T sym
perm(P

⊥q, Pq, Pq), t ∈ (0, tend], x ∈ Rd (3.2a)

q(0, x) = p0(x). (3.2b)

Analogous to (2.29) we set

EB (t) := exp (−t(iL+ εB)) . (3.3)

3.2 Construction of the method

The aim is now to construct a uniformly accurate time integrator for the REE (3.2) to compute approx-
imations qn ≈ q(tn) for times tn = nτ with step size τ = tend/N , where N ∈ N is the total number of
time steps. We will always assume that

q ∈ C([0, tend],W
2) ∩ C1([0, tend],W

1) ∩ C2([0, tend],W )

and that there is a constant C such that

sup
t∈[0,tend]

∥q(t)∥W 2 ≤ C for all ε ∈ (0, 1]. (3.4)

It can be shown that this is true if p0 ∈W 2 and tend is sufficiently small; cf. Section 2.4.

From now on, the notation

f(t, ε, τ) = O(εjτ ℓ)

for an error term f(t, ε, τ) and j, ℓ ∈ N0 means that there is a constant C such that

sup
t∈[0,tend]

∥f(t, ε, τ)∥W ≤ Cεjτ ℓ.

As a starting point for the construction we consider Duhamel’s formula

q(tn + τ) = EB
(

τ
ε2

)
q(tn) +

τ∫
0

EB
(
τ−s
ε2

)
T sym(Pq(tn + s)) ds (3.5)

+
1

2

τ∫
0

EB
(
τ−s
ε2

)
T sym
perm(P

⊥q(tn + s), P q(tn + s), P q(tn + s)) ds.

We have to approximate the integrals up to an error of O(τ2) by computable expressions which involve
only q(tn).

The smooth part Pq(tn + s) can simply be replaced by Pq(tn), because Lemma 2.11 implies that

∥Pq(tn + s)− Pq(tn)∥W 1 ≤ Cs, s ≥ 0 (3.6)

if p0 ∈W 2. The uniform boundedness of q and the inequalities (2.26) and (2.28) yield

q(tn + τ) = EB
(

τ
ε2

)
q(tn) +

τ∫
0

EB
(
τ−s
ε2

)
T sym(Pq(tn)) ds (3.7)

+
1

2

τ∫
0

EB
(
τ−s
ε2

)
T sym
perm(P

⊥q(tn + s), P q(tn), P q(tn)) ds+O(τ2)
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because as in (2.8) one can check that∥∥EB ( τ−s
ε2

)∥∥
W

=
∥∥∥exp(− (τ−s)

ε2 (iL+ εB)
)∥∥∥

W
= 1.

The first integral on the right-hand side of (3.7) can then be computed by means of the Fourier transform
of T sym(Pq(tn)); cf. Section 4.

The main challenge is to approximate the second integral term

1

2

τ∫
0

EB
(
τ−s
ε2

)
g(s) ds, g(s) = T sym

perm(P
⊥q(tn + s), P q(tn), P q(tn)) (3.8)

accurately and efficiently. The action of the operator

EB
(
τ−s
ε2

)
= exp

(
− (τ − s)

ε2
(iL+ εB)

)
(3.9)

on a function has to be computed in Fourier space due to the differential operator B; cf. (2.7). Hence,
we have to approximate the Fourier transform ĝ(s) of g(s) in some way or the other. The first option is

to consider the counterpart of T sym
perm in Fourier space, i.e. to derive a nonlinear operator T̃ sym

perm with the
property that

Fg(s) = T̃ sym
perm

(
FP⊥q(tn + s),FPq(tn),FPq(tn)

)
.

But since the nonlinearitiy T and thus also T sym
perm typically involve multiplications (as, e.g., in the

Maxwell–Lorentz model (4.7)) and since the Fourier transform turns multiplications into convolutions,

computing (3.8) by means of T̃ sym
perm would cause numerical costs which grow cubically with the number of

grid points; cf. [3, Equations (3.23),(5.12) and Section 5.5.1]. For this reason, it is crucial to first compute
g(s) in physical space and only then transform the result to Fourier space.

For an approximation of the integral (3.8), it is tempting to freeze g(s) at some constant value, say
g(s) ≈ g(0), and solve the resulting integral analytically, as for the first integral on the right-hand side
of (3.7). Unfortunately, freezing g(s) ≈ g(0) spoils the accuracy because g involves the highly oscillatory
part P⊥q(tn + s). Hence, we need a better approximation to P⊥q(tn + s) which satisfies the following
two criteria: First, evaluations of the resulting counterpart of g(s) must be cheap, and second, the
corresponding integral must be analytically computable. In contrast to [6, 10, 11] and many other works,
we cannot simply use Duhamel’s formula (3.5) a second time for this purpose, because this would lead
to expressions of the form

T sym
perm

(
P⊥EB

(
s
ε2

)
q(tn), . . . , . . .

)
.

Such terms cannot be computed efficiently, because EB
(

s
ε2

)
cannot be evaluated in physical space, as we

have pointed out before.

At this point, the crucial idea is to employ the representation

P⊥q(tn + s) = E
(

s
ε2

)
P⊥q(tn) + In

1 (s, q, ε) + In
2 (s, q, ε) + In

3 (s, q, ε) (3.10)

with3

E (t) = exp (−itL) for t ∈ R, (3.11)

In
1 (s, q, ε) = −1

ε

s∫
0

E
(
s−r
ε2

)
P⊥Bq(tn + r) dr,

In
2 (s, q, ε) =

s∫
0

E
(
s−r
ε2

)
P⊥T sym(Pq(tn + r)) dr,

In
3 (s, q, ε) =

1

2

s∫
0

E
(
s−r
ε2

)
P⊥T sym

perm

(
P⊥q(tn + r), P q(tn + r), P q(tn + r)

)
dr.

3The time-dependent matrix E (t) is, of course, not the same as the matrix E in (1.1a).
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This is again obtained by applying Duhamel’s formula to (3.2a), but with the term 1
εBq removed from the

linear part and grouped together with the nonlinear terms instead. The advantage of the representation
(3.10) is that E (t) is only a matrix, not a differential operator, and as such can be applied to vector-
valued functions without passing to Fourier space. The downside is that In

1 (s, q, ε) contains the factor
1/ε and, in addition, the unbounded differential operator B, which is disadvantageous for accuracy and
stability, respectively. Before we tackle this problem, we show in the following lemma that the terms
In
2 (s, q, ε) and In

3 (s, q, ε) are not relevant for the construction of the time integrator.

Lemma 3.1
Under the assumptions of Corollary 2.10, there is a constant C such that

∥In
2 (s, q, ε)∥W ≤ Cs and ∥In

3 (s, q, ε)∥W ≤ Cεs

for all s ∈ [0, τ ].

Proof. The inequalities follow directly from the fact that ∥E (t) ∥W = 1 for all t ∈ R together with (2.25)
and (2.27), and in case of In

3 from Corollary 2.10.

This lemma implies that if we substitute (3.10) into the third term of (3.7) and then omit In
2 (s, q, ε) and

In
3 (s, q, ε), this causes only a contribution of O(τ2(1 + ε)) to the local error, because the variable s is

integrated from 0 to τ . Omitting the first term In
1 (s, q, ε), however, would formally cause a contribution

of O(τ2/ε) to the local error, which is more than what we can afford.

In order to identify the dominating part of In
1 (s, q, ε), we decompose

P⊥Bq(tn + r) = P⊥BPq(tn + r) + P⊥BP⊥q(tn + r)

and note that P⊥BP = P⊥AP by definition. Since

∥BP⊥q(tn + r)∥W ≤ Cε for tn + r ∈ [0, tend]

by Corollary 2.10, it follows that

In
1 (s, q, ε) = −1

ε

s∫
0

E
(
s−r
ε2

)
P⊥APq(tn + r) dr +O(s). (3.12)

The integral still contains evaluations of q at times tn + r for r ∈ [0, s]. We fix the solution at time tn
such that

−1

ε

s∫
0

E
(
s−r
ε2

)
P⊥APq(tn + r) dr = −1

ε

s∫
0

E
(
s−r
ε2

)
P⊥APq(tn) dr + J n(s, q, ε)

with the error term

J n(s, q, ε) = −1

ε

s∫
0

E
(
s−r
ε2

)
P⊥A

(
Pq(tn + r)− Pq(tn)

)
dr.

We want to show that the term J n(s, q, ε) is sufficiently small and hence can be neglected in the con-
struction of the integrator. Note that the straightforward bound

∥∥∥1
ε

s∫
0

exp

(
− i(s− r)

ε2
L

)
P⊥A

(
Pq(tn + r)− Pq(tn)

)
dr
∥∥∥
W

≤ s

ε
sup

r∈[0,s]

∥∥A(Pq(tn + r)− Pq(tn)
)∥∥

W
≤ C

s2

ε
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following from (3.6) is not sufficient. If L were invertible, then a factor of ε2 could be gained by integrating
by parts, but we know that L has a nontrivial kernel. At this point, the occurrence of the projector P⊥

in the integrand is crucial.

Let L⊥ denote the restriction of L to the subspace P⊥Cm, i.e.

L⊥ : P⊥Cm → P⊥Cm, L⊥ = LP⊥ =

m∑
ℓ=m0+1

λℓ(0)ψℓ(0)ψ
∗
ℓ (0) (3.13)

with λℓ and ψℓ from Section 2.2. This mapping is invertible with inverse

L−1
⊥ : P⊥Cm → P⊥Cm, L−1

⊥ =

m∑
ℓ=m0+1

1

λℓ(0)
ψℓ(0)ψ

∗
ℓ (0), (3.14)

cf. [5, Section 3.2] and similar in [4, proof of Proposition 3.4]. The definition of L⊥ implies that LjP⊥ =
Lj
⊥P

⊥ for every j ∈ N0 and hence that

E
(

t
ε2

)
P⊥ = exp

(
− it

ε2
L⊥

)
P⊥ for all t ∈ R. (3.15)

This allows us to prove the following bound for J n(s, q, ε).

Lemma 3.2
Let p0 ∈W 2. There is a constant C such that

∥J n(s, q, ε)∥W ≤ Cεs

for all s ∈ [0, τ ].

Proof. Using (3.15), we can apply integration by parts. This yields

J n(s, q, ε) = −1

ε

s∫
0

exp

(
− i(s− r)

ε2
L⊥

)
P⊥A

(
Pq(tn + r)− Pq(tn)

)
dr

= iεL−1
⊥ P⊥A

(
Pq(tn + s)− Pq(tn)

)
− iε

s∫
0

L−1
⊥ exp

(
− i(s− r)

ε2
L⊥

)
∂tP

⊥APq(tn + r) dr.

Both terms on the right-hand side are in O(εs) due to (3.6) and Lemma 2.11.

Combining (3.12) and Lemma 3.2 leads to

In
1 (s, q, ε) = −1

ε

s∫
0

E
(
s−r
ε2

)
P⊥APq(tn) dr +O(εs+ s). (3.16)

The term of O(εs+s) can be omitted in the construction of the method. The first term on the right-hand
side of (3.16) can be computed numerically, but, as mentioned before, it would lead to an instable method
because of the differential operator A. To ensure stability, we approximate A by a filtered version as, e.g.,
in [10, Section 2.3] and [11, Section 2]. Unfortunately, the default choice

A ≈ i

τ
sin
(τ
i
A
)

(3.17)

used in [10, 11] does not work in our case; cf. Remark 3.10 below. As we will see later, the proper choice
is

A ≈ iε

τ
sin
( τ
iε
A
)
= Ã τ

ε
(3.18)

with Ãγ = i
γ sin

(
γ
i A
)
.
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Lemma 3.3
For all γ > 0 and f ∈W the inequality ∥∥∥Ãγf

∥∥∥
W

≤ 1

γ
∥f∥W (3.19)

holds. Moreover, there is a constant C such that∥∥∥Af − Ãγf
∥∥∥
W

≤ Cγ ∥f∥W 2 (3.20)

for all f ∈W 2 and γ > 0.

Proof. For every γ > 0 and every f ∈W , we obtain by definition of the Wiener algebra that∥∥∥Ãγf
∥∥∥
W

=

∥∥∥∥ i

γ
sin
(γ
i
A
)
f

∥∥∥∥
W

=
1

γ

∥∥∥sin (γA(·)) f̂∥∥∥
L1

≤ 1

γ

∥∥∥f̂∥∥∥
L1

=
1

γ
∥f∥W .

If f ∈W 2, then∥∥∥Af − Ãγf
∥∥∥
W

=

∥∥∥∥iA(·)f̂ − i

γ
sin (γA(·)) f̂

∥∥∥∥
L1

=

∫
Rd

∣∣∣A(k)f̂(k)− 1

γ
sin (γA(k)) f̂(k)

∣∣∣
2
dk.

For every fixed k ∈ Rd, Taylor expansion of s 7→ sin (γsA(k)) about s = 0 yields

∣∣∣∣A(k)f̂(k)− 1

γ
sin (γA(k)) f̂(k)

∣∣∣∣
2

≤ γ

∣∣∣∣∣∣
1∫

0

(1− s)A2(k) sin (γsA(k)) f̂(k) ds

∣∣∣∣∣∣
2

≤ Cγ|k|21|f̂(k)|2,

which proves (3.20).

Next, we estimate the error caused by using Ã τ
ε
instead of A in (3.16). As before, the obvious estimate

∥∥∥1
ε

s∫
0

E
(
s−r
ε2

)
P⊥(A− Ã τ

ε

)
Pq(tn) dr

∥∥∥
W

≤ s

ε

∥∥(A− Ã τ
ε

)
Pq(tn)

∥∥
W

≤ C
sτ

ε2
∥∥Pq(tn)∥∥W 2

is inadequate for this purpose. Once again, we have to take advantage of the fact that the restriction of
L to the subspace P⊥Cm is invertible.

Lemma 3.4
There is a constant C such that for every f ∈W 2

1

ε

∥∥∥ s∫
0

E
(
s−r
ε2

)
P⊥(A− Ã τ

ε

)
Pf dr

∥∥∥
W

≤ Cτ∥f∥W 2 .

Proof. It follows from (3.15) that

s∫
0

E
(
s−r
ε2

)
P⊥ dr =

s∫
0

exp

(
− i(s− r)

ε2
L⊥

)
P⊥ dr =

ε2

i

(
I − exp

(
− is

ε2
L⊥

))
L−1
⊥ P⊥. (3.21)

With (3.20) we obtain

1

ε

∥∥∥ s∫
0

E
(
s−r
ε2

)
P⊥(A− Ã τ

ε

)
Pf dr

∥∥∥
W

≤ Cε
∥∥∥(A− Ã τ

ε

)
Pf dr

∥∥∥
W

≤ Cτ∥f∥W 2 .
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By combining (3.10) with Lemmas 3.1, 3.2, and 3.4 we obtain the representation

P⊥q(tn + s) = E
(

s
ε2

)
P⊥q(tn)−

1

ε

s∫
0

E
(
s−r
ε2

)
dr P⊥Ã τ

ε
Pq(tn) +O(τ + ετ).

Omitting the term of O(τ + ετ) yields an approximation for P⊥q(tn+ s) which we plug into (3.7). Then,
all remaining integrals can be computed analytically. This completes the construction of the desired
uniformly accurate time integrator.

In order to write this method in a concise form, we introduce the abbreviation

Gτ (s) :=
1

ε

s∫
0

E
(
s−r
ε2

)
dr P⊥Ã τ

ε
P. (3.22)

With this notation, the numerical method to compute approximations qn ≈ q(tn) at tn = nτ ∈ [0, tend]
is defined by qn+1 = Φτ (q

n) with numerical flow

Φτ (q
n) := EB

(
τ
ε2

)
qn +

τ∫
0

EB
(
τ−s
ε2

)
T sym(Pqn) ds (3.23)

+
1

2

τ∫
0

EB
(
τ−s
ε2

)
T sym
perm

(
E
(

s
ε2

)
P⊥qn − Gτ (s)q

n, P qn, P qn
)
ds.

Details concerning implementation and in particular the computation of the integrals will be discussed
in Section 4.

We would like to point out that the operators EB (t) and Gτ (s) also depend on the parameter ε, but for
the sake of clarity, we refrain from expressing this in the notation.

3.3 Error analysis

Our next goal is to prove the following error bound, which implies that the time integrator for the REE
is uniformly accurate and of order one.

Theorem 3.5
Let p0 ∈W 2, let

q ∈ C2([0, tend];W ) ∩ C1([0, tend];W
1) ∩ C([0, tend];W 2)

be the solution of (2.24) and let qn = Φn
τ (p0) be the approximations defined by (3.23) with step size

τ = tend/N for N ∈ N. Suppose that the numerical solution is uniformly bounded: there is a constant C
such that

sup
ε∈(0,1]

max
n=0,...,N

∥qn∥W ≤ C (3.24)

for all τ and N . Then, under Assumptions 2.1 and 2.3, the global error is bounded by

max
n=0,...,N

∥qn − q(tn)∥L∞ ≤ Cglobal τ (3.25)

with a constant Cglobal which depends on tend, but not on ε,N , and τ .

Remark 3.6
For sufficiently small τ uniform boundedness of the numerical solution can be verified with a classical
bootstrapping argument as, e.g., in [11, proof of Theorem 3.1].

The rest of this subsection is devoted to the proof of Theorem 3.5. We start with the following observation.
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Lemma 3.7 (Local error)
Under the assumptions of Theorem 3.5 there is a constant Clocal such that

∥q(tn+1)− Φτ (q(tn))∥W ≤ Clocal τ
2

for all n = 0, . . . , N − 1 and for all ε ∈ (0, 1].

Proof. This is an immediate consequence of how we have derived the time integrator in Section 3.2.

For the proof of stability, we need the following auxiliary result.

Lemma 3.8
For every f ∈W there is a constant C such that∥∥E ( s

ε2

)
P⊥f − Gτ (s)f

∥∥
W

≤ 2 ∥f∥W

for s ∈ [0, τ ].

Proof. We bound the two parts separately. Since the matrix E
(

s
ε2

)
= exp

(
− is

ε2L
)
is unitary, it follows

that ∥∥E ( s
ε2

)
P⊥f

∥∥
W

≤
∥∥P⊥f

∥∥
W

≤ ∥f∥W .

For s ∈ [0, τ ], the second part can be bounded with (3.19) by

∥Gτ (s)f∥W =

∥∥∥∥∥∥1ε
s∫

0

E
(
s−r
ε2

)
dr P⊥Ã τ

ε
Pf

∥∥∥∥∥∥
W

≤ τ

ε

∥∥∥Ã τ
ε
Pf
∥∥∥
W

≤ ∥f∥W .

Proposition 3.9 (Stability)
Let f, g ∈W and τ > 0. Then the numerical method (3.23) satisfies

∥Φτ (f)− Φτ (g)∥W ≤ eτC∥f − g∥W . (3.26)

Proof. From the definition of the numerical flow Φτ we obtain

Φτ (f)− Φτ (g)

= EB
(

τ
ε2

)
(f − g) +

τ∫
0

EB
(
τ−s
ε2

)
[T sym (Pf)− T sym (Pg)] ds

+
1

2

τ∫
0

EB
(
τ−s
ε2

) [
T sym
perm

(
E
(

s
ε2

)
P⊥f − Gτ (s)f, Pf, Pf

)
− T sym

perm

(
E
(

s
ε2

)
P⊥g − Gτ (s)g, Pg, Pg

) ]
ds.

Since EB
(
τ−s
ε2

)
is an isometry on W for every s ∈ [0, τ ], we have

∥Φτ (f)− Φτ (g)∥W
≤ ∥f − g∥W + τ ∥T sym(Pf)− T sym(Pg)∥W
+
τ

2
sup

s∈[0,τ ]

∥∥∥T sym
perm

(
E
(

s
ε2

)
P⊥f − Gτ (s)f, Pf, Pf

)
− T sym

perm

(
E
(

s
ε2

)
P⊥g − Gτ (s)g, Pg, Pg

)∥∥∥
W
.

Lemma 3.8 allows us to apply the inequalities (2.26) and (2.28) to infer

∥Φτ (f)− Φτ (g)∥W ≤ ∥f − g∥W + Cτ ∥f − g∥W + Cτ sup
s∈[0,τ ]

∥∥E ( s
ε2

)
P⊥(f − g)− Gτ (s)(f − g)

∥∥
W
.
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It follows with Lemma 3.8 that∥∥E ( s
ε2

)
P⊥(f − g)− Gτ (s)(f − g)

∥∥
W

≤ C ∥f − g∥W

for s ∈ [0, τ ]. In conclusion, this yields

∥Φτ (f)− Φτ (g)∥W ≤ ∥f − g∥W + Cτ ∥f − g∥W ≤ eCτ ∥f − g∥W .

Remark 3.10
Note that in the proof of Lemma 3.8 and Proposition 3.9 the choice of the filtering is important. If, for
instance, we replace Ã τ

ε
by the standard choice Ãτ , then the last inequality in the proof of Lemma 3.8

becomes

τ

ε

∥∥∥ÃτPf
∥∥∥
W

≤ C

ε
∥f∥W .

This is not sufficient for establishing stability in the proof of Proposition 3.9, because with this estimate
we would only obtain

∥Φτ (f)− Φτ (g)∥W ≤ eτC/ε∥f − g∥W .

instead of (3.26).

Proof of Theorem 3.5. After these preparations, the proof of Theorem 3.5 follows by combining the local
error bound from Lemma 3.7 with the stability result from Proposition 3.9 in the classical construction
known as Lady Windermere’s fan.

4 Practical implementation and numerical experiments

Recall that numerical approximations are computed by qn+1 = Φτ (q
n). From the representation of the

numerical flow Φτ given in (3.23), however, it is not obvious how this leads to an executable algorithm.
In the following subsection, we explain how to compute the integrals in (3.23) analytically. These ex-
planations refer still to the semi-discretization in time without any discretization in space. Then, in
Section 4.2, we sketch how to obtain a fully discrete method. Numerical experiments with this method
are presented in Section 4.3.

4.1 Computation of the integrals

We decompose the numerical flow (3.23) into three parts, i.e. we let Φτ = Φ1,τ +Φ2,τ +Φ3,τ with

Φ1,τ (q
n) = EB

(
τ
ε2

)
qn,

Φ2,τ (q
n) =

τ∫
0

EB
(
τ−s
ε2

)
T sym(Pqn) ds,

Φ3,τ (q
n) =

1

2

τ∫
0

EB
(
τ−s
ε2

)
T sym
perm

(
E
(

s
ε2

)
P⊥qn − Gτ (s)q

n, P qn, P qn
)
ds.

The abbreviations EB (t), E (t), and Gτ (s) are repeated here for the convenience of the reader:

EB (t) = exp (−t(iL+ εB)) ,
E (t) = exp (−itL) ,

Gτ (s) =
1

ε

s∫
0

E
(
s−r
ε2

)
dr P⊥Ã τ

ε
P.
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We discuss the three terms Φ1,τ ,Φ2,τ ,Φ3,τ of the time integrator individually. The exponential EB
(

τ
ε2

)
in the first term Φ1,τ is defined via the Fourier transform as in (2.7), but with B = A− cg · ∇ instead of
A. Hence, we compute

EB
(

τ
ε2

)
qn = F−1

(
exp

(
− iτ

ε2
(L+ εB(·))

)
q̂n(·)

)
=: F−1

(
EiB

(
τ
ε2

)
q̂n
)

(4.1)

with B(k) = A(k)− (cg · k)I and(
EiB (t) q̂n

)
(k) = exp

(
− it(L+ εB(k))

)
q̂n(k).

Note that B(ik) = iB(k) since A(β) is linear in β. For the second term Φ2,τ , we obtain as in (4.1)

F
( τ∫

0

EB
(
τ−s
ε2

)
T sym(Pqn) ds

)
(k) =

τ∫
0

EiB
(
τ−s
ε2

)
ds F

(
T sym(Pqn)

)
(k).

Note that for efficiency reasons it is important to first evaluate the symmetrized nonlinearity in physical
space and then take the Fourier transform, as discussed in Section 3.2. The remaining integral of the
frequency-dependent matrix exponential EiB

(
τ−s
ε2

)
can be calculated by use of the eigendecomposition

L+ εB(k) = L+B(εk) = Ψ(εk)Λ̃(εk)Ψ∗(εk) ∈ Cm×m

with the unitary matrix Ψ(θ) =
(
ψ1(θ)| . . . |ψm(θ)

)
, θ ∈ Rd, and the diagonal matrix

Λ̃(θ) = diag
(
λ̃1(θ), . . . , λ̃m(θ)

)
, λ̃ℓ(θ) = λℓ(θ)− cg · θ for ℓ = 1, . . . ,m.

Recall that λℓ(θ) and ψℓ(θ) are the eigenvalues and eigenvectors, respectively, of L(ω, κ+ θ) = L+A(θ)
as defined in Section 2.2.

Substituting the eigendecomposition into the matrix exponential yields

τ∫
0

EiB
(
τ−s
ε2

)
ds =

τ∫
0

exp

(
− i(τ − s)

ε2
(L+ εB(k))

)
ds = Ψ(εk)

τ∫
0

exp

(
− i(τ − s)

ε2
Λ̃(εk)

)
ds Ψ∗(εk).

In order to represent the integral of the diagonal matrix in a convenient way we introduce the usual
function

φ1 : C → C, φ1(z) =

1∫
0

esz ds =

1∫
0

e(1−s)z ds =

{
ez−1
z for z ̸= 0,

1 else.

This results in

τ∫
0

exp

(
− i(τ − s)

ε2
Λ̃(εk)

)
ds = τ diag

(
φ1

(
− iτ

ε2 λ̃1(εk)
)
, . . . , φ1

(
− iτ

ε2 λ̃m(εk)
))

=:M0
int(τ, εk).

Finally, we consider the last term Φ3,τ of the numerical flow. Applying the Fourier transform as in the
previous two cases gives

F

(
1

2

τ∫
0

EB
(
τ−s
ε2

)
T sym
perm

(
E
(

s
ε2

)
P⊥qn − Gτ (s)q

n, P qn, P qn
)
ds

)
(k)

(4.2)

=
1

2

τ∫
0

EiB
(
τ−s
ε2

)
F
(
T sym
perm

(
E
(

s
ε2

)
P⊥qn − Gτ (s)q

n, P qn, P qn
) )

(k) ds.
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In contrast to the nonlinearity in Φ2,τ , the first argument of T sym
perm is not independent of the integration

variable s and includes a differential operator. It is therefore necessary to proceed in a different way. We
start by expressing Gτ (s) without an integral. It follows from (3.21) that

Gτ (s)q
n =

1

ε

s∫
0

E
(
s−r
ε2

)
dr P⊥Ã τ

ε
Pqn =

ε

i

(
I − exp

(
− is

ε2
L⊥

))
(L⊥)

−1P⊥Ã τ
ε
Pqn.

The filtered differential operator (3.18) applied to Pqn can be calculated using the Fourier transform:

Ã τ
ε
Pqn = F−1(Ã τ

ε
P q̂n) =: bn with Ã τ

ε
(k) =

iε

τ
sin
(τ
ε
A(k)

)
.

Substituting the previous calculations in E
(

s
ε2

)
P⊥qn − Gτ (τ)q

n together with (3.15) yields

E
(

s
ε2

)
P⊥qn − Gτ (τ)q

n = exp

(
− is

ε2
L⊥

)
P⊥qn + iε

(
I − exp

(
− is

ε2
L⊥

))
(L⊥)

−1P⊥bn

= exp

(
− is

ε2
L⊥

)(
P⊥qn − iε(L⊥)

−1P⊥bn
)
+ iε(L⊥)

−1P⊥bn

and hence

F
(
T sym
perm

(
E
(

s
ε2

)
P⊥qn − Gτ (s)q

n, P qn, P qn
) )

= Ŷ n
1 (s) + Ŷ n

2 (4.3)

with

Ŷ n
1 (s) = F

(
T sym
perm

(
exp

(
− is

ε2
L⊥

)(
P⊥qn − iε(L⊥)

−1P⊥bn
)
, P qn, P qn

))
,

Ŷ n
2 = F

(
T sym
perm

(
iε(L⊥)

−1P⊥bn, P qn, P qn
))
.

After inserting (4.3) in (4.2), we are left with the two integrals

1

2

τ∫
0

EiB
(
τ−s
ε2

)
Ŷ n
1 (s) ds and

1

2

τ∫
0

EiB
(
τ−s
ε2

)
ds Ŷ n

2 .

Since Ŷ n
2 is already independent of the integration variable s, the second integral can be treated in the

same way as Φ2,τ .

In order to compute the first integral analytically, we have to cast Ŷ n
1 (s) into a form where the integration

variable s does not appear in the first argument of T sym
perm any more. For this purpose, we use the

eigendecomposition

L⊥ = Ψ(0)Λ(0)Ψ∗(0)

with unitary matrix Ψ(0) =
(
ψ1(0)| . . . |ψm(0)

)
and diagonal matrix

Λ(0) = diag
(
0, . . . , 0, λm0+1(0), . . . , λm(0)

)
.

If the argument of Ψ or Λ is equal to zero, this argument will be omitted in subsequent calculations.
With the eigendecomposition

L−1
⊥ = ΨΛ−1

⊥ Ψ∗ with Λ−1
⊥ = diag(0, . . . , 0, λ−1

m0+1, . . . , λ
−1
m )

obtained from (3.14), the first entry of the nonlinearity in Ŷ n
1 (s) can be reformulated as

exp

(
− is

ε2
L⊥

)(
P⊥qn − iεL−1

⊥ P⊥bn
)
= Ψexp

(
− is

ε2
Λ

)
(Ψ∗P⊥qn − iεΛ−1

⊥ Ψ∗P⊥bn)

=

m∑
ℓ=m0+1

exp

(
− is

ε2
λℓ

)
anℓ ψℓ (4.4)
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with anℓ := ψ∗
ℓ

(
P⊥qn − iε

λℓ
P⊥bn

)
. This yields

Ŷ n
1 (s) = F

(
T sym
perm

(
m∑

ℓ=m0+1

exp

(
− is

ε2
λℓ

)
anℓ ψℓ, P q

n, P qn

))
. (4.5)

At this point, we would like to take the sum and the scalar factor exp
(
− is

ε2λℓ
)
out of the nonlinearity.

Since T sym is only real-trilinear (cf. Section 2.1) and the definition of T sym
perm in (2.22) is based on T sym,

we define yet another nonlinearity, namely

Tperm(f1, f2, f3) = T (f1, f2, f3) + T (f1, f3, f2) + T (f2, f1, f3) (4.6)

+ T (f2, f3, f1) + T (f3, f1, f2) + T (f3, f2, f1)

for f1, f2, f3 ∈ Cm. This is similar to (2.22), but with T sym replaced by T . By definition, Tperm :
Cm×Cm×Cm → Cm inherits the property of being trilinear from T . With (4.6) we can now write (2.22)
in the equivalent form

T sym
perm(f1, f2, f3) = Tperm(f1, f2, f3) + Tperm(f1, f2, f3) + Tperm(f1, f2, f3).

Applying this to (4.5) and using trilinearity of Tperm leads to

Ŷ n
1 (s) = 2

m∑
ℓ=m0+1

exp

(
− is

ε2
λℓ

)
F
(
Tperm

(
anℓ ψℓ, P q

n, P qn
))

+

m∑
ℓ=m0+1

exp

(
+
is

ε2
λℓ

)
F
(
Tperm

(
anℓ ψℓ, P q

n, P qn
))
.

Substituting this representation into

1

2

τ∫
0

EiB
(
τ−s
ε2

)
Ŷ n
1 (s) ds

provides the desired form of the integral, which allows for its analytical calculation. The two parts of
Ŷ n
1 (s) have a very similar structure and can thus be treated in essentially the same way. Hence, we will

perform the calculation of the integral exemplarily for the first part of Ŷ n
1 (s), i.e.

m∑
ℓ=m0+1

τ∫
0

exp

(
− is

ε2
λℓ

)
EiB

(
τ−s
ε2

)
ds F

(
Tperm

(
anℓ ψℓ, P q

n, P qn
))
.

Inserting again the eigendecomposition L+B(εk) = Ψ(εk)Λ̃(εk)Ψ∗(εk) into the matrix exponential

EiB
(
τ−s
ε2

)
= exp

(
− i(τ − s)

ε2
(L+B(εk))

)
yields for ℓ = m0 + 1, . . . ,m

τ∫
0

exp

(
− is

ε2
λℓ

)
EiB

(
τ−s
ε2

)
ds = Ψ(εk)

τ∫
0

exp

(
− is

ε2
λℓ

)
exp

(
− i(τ − s)

ε2
Λ̃(εk))

)
ds Ψ∗(εk).

The remaining integral can be expressed by the function φ1:

τ∫
0

exp

(
− is

ε2
λℓ

)
exp

(
− i(τ − s)

ε2
Λ̃(εk)

)
ds

= exp

(
− iτ

ε2
Λ̃(εk)

) τ∫
0

exp

(
− is

ε2
λℓ

)
exp

(
is

ε2
Λ̃(εk)

)
ds

= τ diag

(
exp

(
− iτ

ε2
λ̃j(εk)

)
j

φ1

(
iτ

ε2
(
− λℓ + λ̃j(εk)

))
j

)
=:M−

int,ℓ(τ, εk).
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For the second part of Ŷ n
1 (s), where the sign in the scalar exponential factor differs, we have to replace

this by

τ∫
0

exp

(
is

ε2
λℓ

)
exp

(
− i(τ − s)

ε2
Λ̃(εk)

)
ds

= τ diag

(
exp

(
− iτ

ε2
λ̃j(εk)

)
j

φ1

(
iτ

ε2
(
λℓ + λ̃j(εk)

))
j

)
=:M+

int,ℓ(τ, εk).

In summary, the new time integrator can be written without integrals as follows:

qn+1(k) = F−1q̂n+1(k),

q̂n+1(k) = exp

(
− iτ

ε2
(L+ εB(k))

)
q̂n(k)

+ Ψ(εk)M0
int(τ, εk)Ψ

∗(εk)

[
F (T sym(Pqn)) (k) +

1

2
Ŷ n
2 (k)

]
+

m∑
ℓ=m0+1

Ψ(εk)M−
int,ℓ(τ, εk)Ψ

∗(εk) F
(
Tperm

(
anℓ ψℓ, P q

n, P qn
))

(k)

+
1

2

m∑
ℓ=m0+1

Ψ(εk)M+
int,ℓ(τ, εk)Ψ

∗(εk) F
(
Tperm

(
anℓ ψℓ, P q

n, P qn
))

(k).

Note that all matrices involved depend only on k, but not on n. In an efficient implementation, these
matrices have to be computed only once for all considered values of k.

Remark 4.1
In principle, we could also construct a similar time integrator for the envelope equation (2.5a) with
the full nonlinearity T sym(p) = T sym(p, p, p) after changing variables as in Section 3.1. The problem
is that here the oscillatory part P⊥p appears in all three arguments of the nonlinearity, and using the
decomposition (4.4) with q replaced by p in all three arguments leads to double and triple sums instead
of the single sum

∑m
ℓ=m0+1(. . .). This increases the numerical work per time step significantly and makes

the implementation more complicated. On the other hand, Theorems 2.5 and 2.9 show that replacing the
envelope equation by the REE in the SVEA does not deteriorate the accuracy. For these reasons, it is
preferable to base the construction of the time integrator on the REE.

4.2 Space discretization

In the co-moving coordinate system introduced in Section 3.1, the essential support of the solution remains
in a compact subset of Rd. This allows us to consider the REE on a d-dimensional cube [−xmax, xmax]

d

with periodic boundary conditions instead of the full space Rd. The error caused by this truncation is
negligible on finite time intervals as long as xmax is sufficiently large.

Up to now, we have focused on the semi-discretization of the REE in time. In order to compute numerical
approximations, however, it is necessary to discretize both space and time. We choose a number kmax ∈ N
and define the set of multi-indices

Kd =
{
k = (k1, . . . , kd) ∈ Zd with kj ∈ {−kmax, . . . , kmax − 1}

}
.

The method of choice for the space discretization is spectral collocation on the tensor grid

hKd = {hk ∈ Td with k ∈ Kd} with mesh size h =
xmax

kmax
.

This means that the exact solution q(tn, ·) is approximated by a trigonometric polynomial which is either
represented by its coefficients or by the function values at the nodes hk ∈ hKd. The celebrated fast
Fourier transform allows switching between both representations with low computational costs. The
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latter representation is convenient for the evaluation of nonlinear terms, whereas the former is used to
evaluate functions of differential operators in an efficient way. If, for example, f is the trigonometric
polynomial

f(x) =
∑
k∈Kd

ck exp

(
iπ

xmax
k · x

)

with coefficients ck ∈ Rd, then it follows that

EB
(
τ−s
ε2

)
f(x) =

∑
k∈Kd

EiB
(
τ−s
ε2

)
ck exp

(
iπ

xmax
k · x

)
,

where EiB
(
τ−s
ε2

)
is defined in (4.1). To evaluate the right-hand side, we simply have to apply a matrix

exponential to each of the coefficient vectors ck.

4.3 Model problem and numerical example

A prominent example of the type (1.1) is the Maxwell–Lorentz system

∂tB = −curlE,

∂tE = curlB− 1

ε
Q,

(4.7)
∂tQ =

1

ε
(E−P) + ε|P|22P,

∂tP =
1

ε
Q,

cf. [14, 15, 17, 28, 29]. In this system, the Maxwell equations for the electric field E(t, x) ∈ R3 and the
magnetic field B(t, x) ∈ R3 are coupled to ordinary differential equations for the polarization P(t, x) ∈ R3

and its time derivative 1
εQ(t, x) ∈ R3. An insightful derivation of this model and an interpretation of the

parameter ε was given in [17].

In order to illustrate the behavior of our new time integrator, we consider a one-dimensional reduction
of the Maxwell–Lorentz system, for which a reference solution can be computed. For the simplification
we assume that E = (E1,E2,E3), B = (B1,B2,B3), and P = (P1,P2,P3) depend only on t and x1, but
are constant with respect to x2 and x3. Moreover, we assume that

B1(t, x) = B3(t, x) = E1(t, x) = E2(t, x) = P1(t, x) = P2(t, x) = Q1(t, x) = Q2(t, x) = 0 (4.8)

for t = 0, which implies that (4.8) is true for all t ≥ 0. These simplifications lead to the model problem

∂tB2 = ∂x1E3, x1 ∈ R, t ∈ [0, tend/ε],

∂tE3 = ∂x1
B2 −

1

ε
Q3,

∂tQ3 =
1

ε
(E3 −P3) + ε|P3|2P3,

∂tP3 =
1

ε
Q3.

For the sake of concise notation, we will henceforth write x instead of x1. If we define the function
u : [0, tend/ε]× R → R4 by

u(t, x) =


B2(t, x)
E3(t, x)
Q3(t, x)
P3(t, x)

 ,
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then the model problem can be interpreted a special case of the nonlinear Friedrichs system (1.1a) with
the matrices

A1 =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 and E =


0 0 0 0
0 0 1 0
0 −1 0 1
0 0 −1 0


and the nonlinearity

T (f1, f2, f3) = fT1


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 f2


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 f3.

It can be checked that Assumptions 2.3 is fulfilled. The eigenvalues of L(0, β) are

ω1(β) =
1√
2

√
2 + β2 +

√
4 + β4, ω2(β) = − 1√

2

√
2 + β2 +

√
4 + β4,

ω3(β) =
1√
2

√
2 + β2 −

√
4 + β4, ω4(β) = − 1√

2

√
2 + β2 −

√
4 + β4

for β ∈ R. Since they have constant multiplicities in a neighborhood of β, one can show that a smooth
eigendecomposition exists, cf. [31, Theorem 3.I.1]. In fact, the eigenvalues are even differentiable in zero
in this particular example. For Lipschitz continuity, one can verify the boundedness of the derivative
with respect to β.

Throughout, we fix the wave vector κ = 1.2 and choose ω to be the largest eigenvalue ω1(κ) of L(0, κ).

The initial data are p0(x) = e−x2

ψ1(0), where ψ1(0) is the normalized eigenvector of L(ω, κ) to the
eigenvalue λ1 = 0. Hence, p0 fulfills the polarization condition (Assumption 2.1).

For our numerical computations we use the change of variables from Section 3.1 with tend = 1. The space
discretization is done as explained in Section 4.2 with xmax = 4 and kmax = 32. Reference solutions for
the rescaled versions of the envelope equation and the REE are computed by Strang splitting with an
appropriately small step size τref ≈ 7 · 10−7; cf. [25, Chapter IV], [7, Chapter 6], and [8] for overviews on
splitting methods for PDEs. In both equations, the linear part reads

∂tf = −
(

i

ε2
L− 1

ε
B
)
f

and can be propagated exactly in Fourier space; cf. Section 4.1. To approximate the evolution of the
nonlinear part, we use Heun’s method; cf. [21, Section 5.6.3].

In our first experiment, we test the accuracy of our new time integrator for the REE (3.2) for three
different values of ε. In order to confirm the error bound stated in Theorem 3.5, we compute the discrete
counterpart of the left-hand side of (3.25), which means that the semi-discrete approximation qn and
the exact solution q(tn) are replaced by the fully discrete approximation and by the reference solution,
respectively. Since these objects are computed on finitely many grid points, the norm ∥ · ∥L∞ is replaced
by the discrete maximum norm. The result is visualized by the blue stars in Figure 1. In each panel
of Figure 1, we also depict the corresponding error of the Strang splitting (green crosses). The dashed
black lines are reference lines for convergence order one. We find that the error of the Strang splitting
is completely erratic for τ > Cε2, and that convergence only kicks in for very small step sizes τ ≤ Cε2.
This behavior is to be expected in view of the classical convergence theory for splitting methods, and it
demonstrates that splitting and other traditional methods are not suitable for the REE when ε is small.
In contrast, the plots show that our new time integrator converges with order one without any such step
size restriction, and that the size of the error is independent of the parameter ε, in accordance with
Theorem 3.5. However, the blue stars do not really lie on a straight line, which indicates that actually
the observed convergence order fluctuates a bit around the value 1. This is why two reference lines for
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Figure 1: Accuracy of the new time integrator (blue stars) for ε = 0.1 (top left),
ε = 0.01 (top right) and ε = 0.001 (bottom left). In addition, the error for Strang
splitting (green crosses) is shown for the same values of ε. The dashed black lines
are reference lines for order one.

order 1 are depicted in all panels of Figure 1. We conjecture that this behavior is caused by different
error terms dominating in different regimes, and we emphasize that the numerical results are clearly not
in contradiction to the error bound presented in Theorem 3.5.

Finally, we check the convergence of the REE to the full envelope equation for ε → 0, as predicted by
Theorem 2.9. For simplicity, we use the norm ∥ · ∥L∞ instead of ∥ · ∥W 1 in (2.30), and as before, the
exact solutions p and q are replaced by suitable fully discrete reference solutions, which are computed
for seven different values of ε. The result is displayed in Figure 2. Comparing the error with the black
dashed reference line confirms that replacing the envelope equation by the REE indeed causes an error
proportional to ε2.
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[19] B. Garćıa-Archilla, J. M. Sanz-Serna, and R. D. Skeel. Long-time-step methods for oscillatory differ-
ential equations. SIAM J. Sci. Comput., 20(3):930–963, 1999. doi:10.1137/S1064827596313851.

[20] L. Gauckler. Error analysis of trigonometric integrators for semilinear wave equations. SIAM J.
Numer. Anal., 53(2):1082–1106, 2015. doi:10.1137/140977217.

[21] W. Gautschi. Numerical Analysis. SpringerLink. Birkhäuser Boston, Boston, second edition, 2012.
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