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EXISTENCE OF TRAVELING BREATHER SOLUTIONS TO CUBIC
NONLINEAR MAXWELL EQUATIONS IN WAVEGUIDE GEOMETRIES

SEBASTIAN OHREM AND WOLFGANG REICHEL

Abstract. We consider the full set of Maxwell equations in a slab or cylindrical waveguide
with a cubically nonlinear material law for the polarization of the electric field. The nonlinear
polarization may be instantaneous or retarded, and we assume it to be confined inside the core
of the waveguide. We prove existence of infinitely many spatially localized, real-valued and
time-periodic solutions (breathers) propagating inside the waveguide by applying a variational
minimization method to the resulting scalar quasilinear elliptic-hyperbolic equation for the
profile of the breathers. The temporal period of the breathers has to be carefully chosen
depending on the linear properties of the waveguide. As an example, our results apply if a two-
layered linear axisymmetric waveguide is enhanced by a third core region with low refractive
index where also the nonlinearity is located. In this case we can also connect our existence result
with a bifurcation result. We illustrate our results with numerical simulations. Our solutions are
polychromatic functions in general, but for some special models of retarded nonlinear material
laws, also monochromatic solutions can exist. In this case the numerical simulations raise an
interesting open question: are the breather solutions with minimal energy monochromatic or
polychromatic?

1. Introduction and exemplary results

Our results show the existence of spatially localized, real-valued and time-periodic solutions
(called breathers) to the full set of Maxwell’s equations. We consider two types of waveguide
geometries: the slab waveguide and the axially symmetric waveguide. Our breathers travel
inside the waveguide and are periodic in the direction of travel. In the axially symmetric
waveguide they decay to zero in all directions orthogonal to the waveguide, whereas in the
slab waveguide they are independent of one direction orthogonal to the waveguide and decay
to zero in the remaining direction. The nonlinear properties of the material are confined to
the waveguide and are built according to a Kerr-law which may be instantaneous or retarded
(temporally averaged). Before we summarize the main literature contributions we first intro-
duce the physical problem. Towards the end of this introduction we comment on the physical
consequences of our main theorems.

As our underlying physical model we consider Maxwell’s equations
∇ ·D = 0, ∇× E = −Bt,

∇ ·B = 0, ∇×H = Dt,
(1)
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in the absence of charges and currents. Constitutive relations between the electric field E and
electric displacement D as well as the magnetic field H and the magnetic induction B are
formulated by the following material laws

D = ε0E+P(E), B = µ0H,(2)

where ε0 > 0 is the vacuum permittivity, µ0 > 0 the vacuum permeability and c0 = 1/√ε0µ0

the vacuum speed of light. The relation B = µ0H reflects that the we assume no interaction
of the magnetic field with the material. The interaction of the electric field with the material,
however, is described by the polarization field P(E) which we assume to take the form

P(E) = ε0χ1(x)E+ ε0χ3(x)N(E)(3)

with x = (x, y, z) being the spatial variable, cf. [2, 4, 29]. Moreover, we assume that the cubic
nonlinearity N(E) is isotropic, of Kerr-type, and retarded (temporally averaged) of the form

N(E)(x, t) =

∫ ∞

0

κ̃(τ)|E(x, t− τ)|2 dτ E(x, t)(4)

which includes the case of an instantaneous nonlinearity

N(E) = |E|2E(5)

if we allow κ̃ = δ0 to be the delta-distribution supported at time 0. A physical discussion of
these material laws is given in [10, 16, 29] where also higher-order dependencies and anisotropy
are discussed. Since we are looking for time-periodic fields E(x, t + T ) = E(x, t) with period
T > 0, the nonlinearity may be re-written as

(6) N(E)(x, t) =
1

T

∫ T

0

κ(τ)|E(x, t− τ)|2 dτ E(x, t) =
(
κ ∗ |E(x, ·)|2

)
(t)E(x, t)

with the T -periodic function κ(τ) := T
∑

k∈Z κ̃(τ + kT ) and where we understand κ̃ |(−∞,0)≡ 0.
Moreover we have used the convolution notation (κ ∗ v)(t) = 1

T

∫ T

0
κ(τ)v(t − τ) dτ for the

weighted temporal average of a measurable function v (which still includes the instantaneous
case where κ = δper

0 ). From these equations we obtain the following second-order quasilinear
equation for the electric field E:

∇×∇× E+ ε0µ0

(
(1 + χ1(x))E+ χ3(x)N(E)

)
tt
= 0.(7)

We will show as part of our results how to recover the full set of Maxwell’s equations from (7).
Under suitable assumptions on the convolution kernel κ, cf. (15), we will show that (7) has a
variational structure. Examples are given in Section 1.1.

We are interested in breather solutions of (7) which are moving with speed c ∈ (0, c0). Our
results depend on the choice of the coefficients χ1, χ3, the retardation function κ, the propa-
gation speed c, and the desired period T > 0. We denote the frequency associated to T by
ω := 2π

T
.

In the literature there are several treatments of the existence of breather solutions of (7).
The first sequence of papers deals with monochromatic breathers, i.e., breathers of the type
E(x, t) = E(x) cos(k0ωt + t0). Such breathers are not compatible with the instantaneous
nonlinearity but with the retarded nonlinearity, e.g., in the case κ(t) = 1 which may occur
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when κ̃(t) =
∑

n∈N0
αk1[nT,(n+1)T ) with αn ≥ 0,

∑∞
n=0 αn = T−1. Monochromatic breathers

have the advantage that (7) reduces to the stationary elliptic problem

(8) ∇×∇× E − ε0µ0k
2
0ω

2
(
(1 + χ1(x))E +

χ3(x)

2
|E|2

)
E = 0.

Instead of a cubic nonlinearity χ3(x)
2

|E|2E, also saturated nonlinearities g(x, |E|2)E with a
bounded function g naturally appear. The cases of saturated nonlinearities were first elabo-
rated by Stuart et al. [24, 35, 36, 37, 38, 39, 40, 41] in the case of traveling breathers in an
axisymmetric waveguide. Using divergence free, TE- or TM-polarized ansatz fields, (8) was
reduced to a one-dimensional nonlinear elliptic problem which can, e.g., be solved variationally.
In the follow-up result [26] the assumption of strict axisymmetry is dropped and more gen-
eral two-dimensional waveguide profiles are considered, also allowing pure power nonlinearities.
The case of standing monochromatic breathers also originates from Stuart’s work and leads
to the elliptic nonlinear curl-curl problem (8) in the vector-valued case. First works [3, 6, 7]
considered axisymmetric divergence free ansatz functions, which allowed to reduce ∇ × ∇×
to −∆. Using Helmholtz decomposition and suitable profile decompositions for Palais-Smale
sequences, this restriction has been overcome by Mederski et al. [25, 27, 28], see also the sur-
vey [5] and references therein, with the isotropic cubic Kerr-nonlinearity still being left as an
open problem. A different approach using limiting absorption principles [23] or dual variational
approaches was carried out by Mandel [21], cf. also [22] where a spatially nonlocal variant of
the stationary curl-curl problem was solved. Still within the area of monochromatic breathers,
Dohnal et al. considered in [13] breathers at interfaces between (lossy) metals and dielectrics
including retardation and in [14] they rigorously approximated breathers in photonic crystals
when the frequency parameter is near a band edge.

In the second, much smaller sequence of papers, truly polychromatic breathers are considered
for instantaneous nonlinearities. The first approach which we are aware of, is [32] where spatially
localized traveling wave solutions of the 1+1-dimensional version of the quasi-linear Maxwell
problem (7) were investigated. The authors treat the case where the linear coefficient χ1 is
a periodic arrangement of delta potentials. Using local bifurcation methods the authors solve
a related system which is homotopically linked to the Maxwell problem written as an infinite
coupled system arising from a multiple scale ansatz. It is analytically not clear whether the
bifurcation branch ever reaches the original Maxwell system but numerical results support the
existence of spatially localized traveling waves. A fully rigorous treatment for the existence of
breathers on finite large time scales was given in [15] for a set-up of Kerr-nonlinear dielectrics
occupying two different halfspaces. Two further rigorous treatments of exact polychromatic
breather solutions occurred in [9] and [20] where either the linear or the nonlinear coefficients
take the form of delta-distributions and the existence of travelling breathers was accomplished
by using bifurcation theory and variational methods, respectively. We are not aware of any
treatment of polychromatic breathers in the presence of retarded nonlinearities.

1.1. Examples of our results. We first describe our results on the level of examples. General
results will be given in Section 2. Breather solutions are rare phenomena, and hence the
fact that our examples contain rather specific assumptions on the material coefficients and
do not leave much leeway for perturbations should not be surprising. The main difference to
the previous results may be summarized as follows: while we allow both instantaneous and
retarded material laws, our traveling breather solutions are generally polychromatic and hence
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not limited to monochromatic ansatz functions. Moreover, our solutions satisfy the full set of
Maxwell’s equations exactly, the material coefficients χ1, χ3 are bounded, and our solutions can
be numerically approximated with little effort.

In the following, the speed of light is assumed to be 1 = 1/√ϵ0µ0. Breather solutions will be time-
periodic with period T and are propagating along the z-axis with speed c ∈ (0, 1). We consider
two geometries for breathers: the cylindrical geometry where χ1(x) = χ̃1(r), χ3(x) = χ̃3(r)

only depend on r =
√
x2 + y2, and the slab geometry where χ1(x) = χ̃1(x), χ3(x) = χ̃3(x) only

depend on x. In the cylindrical geometry we consider electric fields of the form

E(x, t) = W (r, t− 1
c
z) · (−y

r
, x
r
, 0)⊤

and in the slab geometry the electric field takes the form

E(x, t) =
(
0,W (x, t− 1

c
z), 0

)⊤
where in both settings W is a real-valued profile which is localized in the first variable (r-
direction in the cylindrical case and x-direction in the slab case) and T -periodic in the second
variable. In both geometries the electric field is a divergence-free TE-mode which means that
E is orthogonal to the direction of propagation.

Definition 1.1. The fields D,E,B,H ∈ L1
loc(R3 × R;R3) weakly solve Maxwell’s equations

provided ∫
R4

D · ∇ϕ d(x, t) = 0,

∫
R4

E · ∇ × Φd(x, t) =

∫
R4

B · ∂tΦd(x, t),∫
R4

B · ∇ϕ d(x, t) = 0,

∫
R4

H · ∇ × Φd(x, t) = −
∫
R4

D · ∂tΦd(x, t)

holds for all ϕ ∈ C∞
c (R4;R) and Φ ∈ C∞

c (R4;R3).

The following theorem can be read as an explicit recipe for the construction of materials which
support breathers. For the kernel κ̃ we generally assume (15). Explicit examples include, e.g.,
κ̃(t) = 1[0,∞)(T

4 + 4t4)
−1
t or κ̃(t) =

∑
n∈N0

αn1[nT,(n+1)T ](t) where αn ≥ 0 with
∑

n∈N0
αn =

T−1, cf. Remark B.2 for details. The material coefficients χ̃1, χ̃3 are assumed fixed and positive
and take the form

χ̃1(x) =

{
d, |x| < R,

χ̃∗
1(|x| −R), |x| > R,

χ̃3(x) =

{
−γ, |x| < R,

0, |x| > R

where either χ̃∗
1 = χ̃per

1 : R → R is a P -periodic function defined on one periodicity cell by

χ̃per
1 (x) =

{
a |x| < 1

2
θP,

b, 1
2
θP < |x| < 1

2
P

or χ̃∗
1 = χ̃step

1 : R → R is a step function defined by

χ̃step
1 (x) =

{
a, |x| < ρ,

b, |x| > ρ

with a, b, d, P,R, γ, ρ > 0, θ ∈ (0, 1).
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We are also using a sign-dependent distance function for a point p ∈ R and a set M ⊆ R:

dist+(p,M) = inf{d+(p,m) : m ∈M} with d+(p,m) =

{ |p−m| if m ≥ p,

∞ if m < p.

Theorem 1.2. Suppose that the nonlinearity N is given by either (5) or by (6) where κ satisfies
(15). Then there exists a (nonzero) T -periodic real-valued weak solution of the Maxwell problem
(1), (2), (3) in the sense of Definition 1.1 both for the slab and the cylindrical case1, and for
the following two choices of the polarization coefficient χ̃∗

1:

(i) If χ̃∗
1 = χ̃per

1 then we assume that the propagation speed c ∈ (0, 1) is chosen such that
0 < d < c−2 − 1 < min

{
a, b, a+d

2

}
and

√
a+ 1− c−2 · θ√

b+ 1− c−2 · (1− θ)
=
m

n
∈ Nodd

Nodd

(9)

and define

T :=
4
√
a+ 1− c−2θP

m
=

4
√
b+ 1− c−2(1− θ)P

n
.

(ii) If χ̃∗
1 = χ̃step

1 then we assume that the propagation speed c ∈ (0, 1) is chosen such that
0 < min{b, d} ≤ max{b, d} < c−2 − 1 < a. Moreover, there are m,n ∈ N coprime with

0 < ξ < arctan
√

a+1−c−2

−d−1+c−2 where ξ := dist+
(
arctan

√
a+1−c−2

−b−1+c−2 ,
mπ

2n
+
π

n
Z
)

(10)

and
T := 4

√
a+ 1− c−2ρ

n

m
.

Additionally, the solution has at all times finite and uniformly bounded electromagnetic energy
per unit square in y, z (slab case), or per unit segment in z (cylindrical case).

1.2. Discussion of the examples. Let us explain the reason behind the particular choices of
the coefficients in a physical context. The parameters a, b are properties of a linear waveguide
(without any nonlinear effect) whose profile is given either by the purely periodic profile χ̃per

1

or the pure step profile χ̃step
1 . Then the conditions on a, b, c have the nature of a nonresonance

condition, i.e., there are no guided waves E(x, t) = W̃ (r)eikω(t−z/c) · (−y
r
, x
r
, 0)⊤ with time period

T = 2π
ω

propagating with speed c along the linear waveguide. Mathematically, this is expressed
by a property of the operator (1 + χ1(x))

−1 · ∇ × ∇× appearing in (7): namely all multiples
k2ω2 with k ∈ Zodd are required to stay away from the spectrum of this weighted operator
when restricted to suitable TE-modes propagating with speed c along the waveguide. This
requirement is quite restrictive and its fulfillment can be guaranteed if ω = 2π

T
is chosen in the

particular way and the parameters a, b, c satisfy either (9) or (10).

The remaining conditions on dmay be described as follows: by inserting a new material of width
2R at the center of the waveguide the purely periodic or pure step waveguide is perturbed. On
the linear level the new material has a low refractive index d and on the level of the nonlinear
refractive index it contributes a defocusing effect. The quantitative strength of the nonlinear

1In the cylindrical case, write r instead of x, and restrict χ̃1, χ̃3 to the half-line [0,∞).
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effect plays no role in the sense that γ > 0 may be arbitrary small. The value d always satisfies
a two-sided condition: on one hand 0 < d < c−2 − 1 and on the other hand

c−2 − 1 <
a+ d

2
or 0 < ξ < arctan

√
a+1−c−2

−d−1+c−2 .

We note that these conditions are always satisfied if d is below but sufficiently close to c−2 − 1.
On the linear level, the presence of the new (linear) material at the core of the waveguide still
does not allow for guided waves of time period T and wave speed c. However, at a different value
d∗ < d such a linear guided mode exists. Moreover, for all values d̃ ∈ (d∗, d) a solution of the
nonlinear equation (7) exists, which bifurcates from 0 as d̃ → d∗. In other words, the solution
of Theorem 1.2 is part of a bifurcation phenomenon with d as a bifurcation parameter. In a
nutshell: the nonlinear equation allows for guided modes in the waveguide at parameter values
for which there are no linear guided modes. We comment on this phenomenon in Section 7.

1.3. Outline of paper. In Section 2 we state the general form of our results (Theorem 2.1 and
Theorem 2.4) of which Theorem 1.2 is a special case. For particular choices of the parameters
compatible with Theorem 1.2, illustrations of approximate breathers can be found at the end of
Section 2. Our main results are stated both for the cylindrical geometry and the slab geometry.
For the proofs we discuss in detail only the cylindrical geometry, as the slab geometry can
be treated similarly with less difficulties. Sections 3–5 contain the proof of our main results.
In Section 3 we show how the problem (7) on R3 × R can be reduced to a problem on the
bounded domain [0, R]× [0, T ]. We then treat this reduced problem using a simple variational
minimization method. In Section 4 we study a regularization of the bounded domain problem
and in this way obtain an improved regularity result for the solutions of both the regularized
and the original problem. Section 5 closes the proof of the main results. Adaptations for
the slab geometry are discussed in Section 6. Moreover, in Section 7 we show the further
regularity result that ∥E∥L∞(suppχ3;L2([0,T ])) is finite and we explain what this has to do with
the dielectric character of the waveguide. Finally, in the same section, we comment on the
bifurcation phenomenon w.r.t. the parameter d.

The appendices contain important technical tools. In Appendix A we prove some auxiliary re-
sults on the fractional Laplacian as well as a version of the famous Kenig-Ponce-Vega inequality
on the torus. In Appendix B we show a basic convexity result for our variational approach,
lower bounds on integrated versions of the nonlinearity, and two trace inequalities. Then, in
Appendix C we verify that the examples given in Theorem 1.2 satisfy the conditions of the
general existence results. Lastly, Appendix D details the numerical methods used to obtain
approximations to the breather solutions that appear in the following section in the images in
Figures 1 and 2 as illustrations of Theorem 1.2.

Let us finish this introduction by pointing out some observations and open questions, cf. Sec-
tion 2 for details. In all our results we allow the breathers to be a polychromatic superposition
of Fourier modes of arbitrary multiples of the basic frequency ω. In case of an instanta-
neous nonlinearity, necessarily infinitely many Fourier modes are non-zero. For time-averaged
nonlinearities there is the possibility of monochromatic breathers and indeed (under suitable
assumptions on κ) such monochromatic breathers exists. As our numerical simulations suggest,
they appear to be more smooth than their polychromatic counterparts, and moreover, for the
slab geometry, it seems that only monochromatic ground states exist. This is not the case for
the cylindrical geometry. These findings based on numerical observations are analytically still
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open, but they do shed new light onto the a-priori choice of a monochromatic ansatz by Stuart
et al. [24, 35, 36, 37, 38, 39, 40, 41] and later by others [3, 5, 6, 7, 25, 27, 28].

2. Main results and numerical illustration

After having given examples we now state our main results in more general form. We divide
this into two subsections: one for the cylindrical geometry and one for the slab geometry. We
define T := R/TZ as the torus of length T which is our time domain equipped with the measure
dt = 1

T
dλ where dλ is the Lebesgue measure on [0, T ].

2.1. Cylindrical geometry. First we consider a cylindrical material, where χ1(x) = χ̃1(r)

and χ3(x) = χ̃3(r) with r :=
√
x2 + y2. For E we consider a wave which is radial in the

(x, y)-directions, travels with speed c > 0 in z-direction, and which has the form

E(x, t) = wt(r, t− 1
c
z) · (−y

r
, x
r
, 0)⊤(11)

with a real-valued profile function wt(r, t). Inserting the ansatz (11) into (7) and integrating
once w.r.t. t yields

−wrr − 1
r
wr +

1
r2
w +

(
χ̃1(r) + 1− c−2

)
wtt + χ̃3(r)N(wt)t = 0, r ∈ [0,∞), t ∈ R(12)

with

N(wt) = Nins(wt) = w3
t(13)

or

N(wt) = Nav(wt) = (κ ∗ w2
t )wt(14)

corresponding to (5) and (6), respectively. If the nonlinearity is given by (14), we require κ to
satisfy the following assumptions:

κ ∈ Cα(T) for some α > 0,

κ(t) = κ(−t) > 0 for t ∈ T,
L4(T) → R, v 7→

∫
T(κ ∗ v2)v2 dt is convex

(15)

where the convexity assumption is satisfied if, e.g., maxκ ≤ 2minκ or if the Fourier transform
of κ is non-negative, cf. Lemma B.1 and Remark B.2 for further concrete examples. In the
following, N will always denote either Nins or Nav. Under assumptions (15) on κ, we will show
that (12) has a variational structure that is crucial in our study.

In the context of radial symmetry it is important to see the relation between a radially sym-
metric function f♯ : R2 \ BR(0) → R, R ≥ 0, and its radial profile function f : [R,∞) → R
via the map f♯ : R2 \ BR(0) → R, (x, y) 7→ f(

√
x2 + y2). For 1 ≤ p < ∞ this gives rise to the

function spaces

Lp
rad([R,∞)) :=

{
f ∈ L1

loc((R,∞)) : f♯ ∈ Lp(R2 \BR(0))
}

with norm

∥f∥Lp
rad([R,∞)) :=

1
p
√
2π

∥∥f♯∥∥Lp(R2\BR(0))
= ∥f∥Lp([R,∞), rdr)



8 SEBASTIAN OHREM AND WOLFGANG REICHEL

For functions depending on radius and time we define

Lp
rad([R,∞)× T) :=

{
f ∈ L1

loc((R,∞)× T) : f♯ ∈ Lp(R2 \BR(0)× R)
}
.

Other spaces of radially symmetric functions based on L2
rad([R,∞)×T), such as Hk

rad([R,∞)×
T), are defined analogously.

For time-periodic functions w : [0,∞) × T → C we consider the temporal Fourier transform
F and denote for k ∈ Z the k-th Fourier coefficient of w by ŵk = Fk[w] =

∫
Twek dt where

ek(t) := eikωt. For the linear part of the differential equation (12)

Lw = −wrr − 1
r
wr +

1
r2
w +

(
χ̃1 + 1− c−2

)
wtt

we can apply the Fourier transform and obtain Fk[Lw] = Lkŵk with

Lk := −∂2r − 1
r
∂r +

1
r2

− k2ω2
(
χ̃1 + 1− c−2

)
.

We make the following assumptions on the nonlinearity N , the potentials χ̃1, χ̃3 and the oper-
ators Lk. Denote by Nodd := 2N− 1 = {1, 3, 5, . . .}.

(A1) χ̃1, χ̃3 ∈ L∞([0,∞),R) and supp(χ̃3) = [0, R] where R > 0.
(A2) N is given either by (13), or by (14) where κ satisfies (15).
(A3) ess sup[0,R] χ̃1 ≤ c−2 − 1, ess sup[0,R] χ̃3 < 0.
(A4) There exists a solution ϕk ∈ H2

rad([R,∞)) \ {0} of Lkϕk = 0 for each k ∈ Nodd.
(A5) The following inequalities hold for ϕk, k ∈ Nodd:

lim inf
k→∞

|ϕk(R)|
∥ϕk∥L2

rad([R,∞))

> 0, sup
k

|ϕ′
k(R)|

k∥ϕk∥L2
rad([R,∞))

<∞.

(A6) With Iα denoting the modified Bessel function of first kind, there exists k0 ∈ Nodd such
that ϕk0(R) ̸= 0 and the following inequality holds:

ϕ′
k0
(R)

ϕk0(R)
>
λk0I

′
1(λk0R)

I1(λk0R)
where λ := ω

(
c−2 − 1− ess inf

[0,R]
χ̃1

)1/2
.

We call ϕk a fundamental solution for Lk. Since Lk = L−k we define ϕ−k := ϕk for all k ∈ Nodd.
The reason for considering k ∈ Nodd instead of k ∈ N0 is that ker(L0) = span

{
r, 1

r

}
does

not contain nonzero L2
rad([R,∞))-functions. The restriction to Nodd amounts to considering

T/2-antiperiodic functions which is compatible with the cubic nonlinearity in (12).

Assumption (A6) is in place to ensure existence of nontrivial solutions to (12). Since I′1(z)

I1(z)
→ 1

as z → ∞ (see [17]), a sufficient condition for (A6) to hold is

(A6’) lim sup
k→∞

ϕ′
k(R)

kϕk(R)
> ω

(
c−2 − 1− ess inf

[0,R]
χ̃1

)1/2,
which additionally ensures that (A6) holds for infinitely many k0.

Next we state our main theorem for the cylindrical geometry.
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Theorem 2.1. Assume (A1)–(A6) hold for given N, κ, χ̃1, χ̃3 and T . Then there exists a
(nonzero) T -periodic real-valued weak solution of the Maxwell problem (1), (2), (3) in the
sense of Definition 1.1. Furthermore, localization orthogonal to the direction of propagation
is expressed by the fact that at all times t0 ∈ R the electromagnetic energy per unit segment
along the z-direction ∫

R×R×[z0,z0+1]

(
D · E+B ·H

)
d(x, y, z)

is finite for all z0 ∈ R and uniformly bounded.

Remark 2.2. Let us explain why our assumptions (A3), (A6) enforce χ̃1 to take values both
below and above c−2 − 1. Suppose for contradiction that χ̃1 ≤ c−2 − 1 everywhere on [0,∞). If
w is a weak T -periodic solution to (12), we see that w = 0 must hold by multiplying (12) with w
and integrating on [0,∞)×T with respect to the measure r dr dt. Hence, non-trivial solutions
do not exist. In fact, the assumption (A6) conflicts with χ̃1(r) ≤ c−2 − 1 everywhere on [0,∞).
Namely, in this case ϕk satisfies (rϕ′

k)
′ = (1

r
+ rk2ω2

(
c−2 − 1 − χ̃1(r)

)
ϕk. Multiplication with

ϕk and integration from R to ∞ yields Rϕ′
k(R)ϕk(R) = −

∫∞
R
r|ϕ′

k|2 + (1
r
+ rk2ω2

(
c−2 − 1 −

χ̃1(r)
)
|ϕk|2 dr ≤ 0. Thus, ϕ′

k(R) and ϕk(R) have opposite sign, contradicting (A6) and the fact
that I1, I ′1 are positive on (0,∞).

We end this subsection with a multiplicity result. For this, we first explain what kind multi-
plicity we consider. Given a solution w of (12), any time-shift (x, t) 7→ w(x, t + τ) for τ ∈ T
also solves (12). Moreover, if N = Nav with κ ≡ 1 one can shift the individual frequencies
separately, i.e. (x, t) 7→

∑
k∈Z ŵk(x)ek(t + τk) solves (12) for all τk ∈ T with τk = τ−k. By

distinct solutions we mean solutions that are not shifts of one another.

Theorem 2.3. Assume (A1)–(A5) hold for given N, κ, χ̃1, χ̃3, T . If (A6) holds for infinitely
many k0 ∈ Nodd (e.g. if (A6’) is true) then there exist infinitely many distinct T -periodic real-
valued weak solutions of the Maxwell problem (1), (2), (3) in the sense of Definition 1.1 with
finite and uniformly bounded electromagnetic energy per unit segment along the z-direction.

2.2. Slab geometry. In our second setting, we consider slab materials that extend infinitely
in the (y, z)-directions. Here χ1(x) = χ̃1(x), χ3(x) = χ̃3(x) and we look for traveling polarized
waves moving at speed c > 0 in y-direction and being constant along the z-direction. More
precisely, we consider fields E given by the ansatz

E(x, t) =
(
0, 0, wt(x, t− 1

c
y)
)⊤
.(16)

Inserting into (7) and integrating once w.r.t. t leads to the equation

−wxx +
(
χ̃1(x) + 1− c−2

)
wtt + χ̃3(x)N(wt)t = 0(17)

for the profile function wt(x, t). Similar to the radial setting we define the operators

L̃ := −∂2x +
(
χ̃1(x) + 1− c−2

)
∂2t , L̃k := −∂2x − k2ω2

(
χ̃1(x) + 1− c−2

)
,

so that FkL̃ = L̃kFk holds for the temporal Fourier transform F . We require the following
assumptions on χ̃1, χ̃3 and L̃k:

(Ã1) χ̃1, χ̃3 ∈ L∞(R,R) are even with supp(χ̃3) = [−R,R] where R > 0.
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(Ã2) N is given either by (13), or by (14) where κ satisfies (15).
(Ã3) ess sup[−R,R] χ̃1 ≤ c−2 − 1, ess sup[−R,R] χ3 < 0.
(Ã4) There exists a solution ϕ̃k ∈ H2([R,∞)) \ {0} of L̃kϕ̃k = 0 for each k ∈ Nodd.
(Ã5) The following inequalities hold for ϕ̃k, k ∈ Nodd:

lim inf
k→∞

∣∣ϕ̃k(R)
∣∣∥∥ϕ̃k

∥∥
L2([R,∞))

> 0, sup
k

∣∣ϕ̃′
k(R)

∣∣
k
∥∥ϕ̃k

∥∥
L2([R,∞))

<∞.

(Ã6) There exists k0 ∈ Nodd such that ϕ̃k0(R) ̸= 0 and the following inequality holds:

ϕ̃
′
k0
(R)

ϕ̃k0(R)
> λk0 tanh(λk0R) with λ := ω

(
c−2 − 1− ess inf

[−R,R]
χ̃1

)1/2
.

Again, a sufficient condition for (Ã6) to hold is

(Ã6’) lim sup
k→∞

ϕ̃
′
k(R)

kϕ̃k(R)
> ω

(
c−2 − 1− ess inf

[−R,R]
χ̃1

)1/2.
We can now formulate our main theorems for the slab geometry.

Theorem 2.4. Assume (Ã1)–(Ã6) hold for given N, χ̃1, χ̃3 and T . Then there exists a (nonzero)
T -periodic real-valued weak solution of the Maxwell problem (1), (2), (3) in the sense of Defi-
nition 1.1. Furthermore, localization in the x-direction is expressed by the fact that at all times
t0 ∈ R the electromagnetic energy per unit square in the y, z-direction∫

R×[y0,y0+1]×[z0,z0+1]

(
D · E+B ·H

)
d(x, y, z)

is finite for all y0, z0 ∈ R and uniformly bounded w.r.t. t0, z0.

Theorem 2.5. Assume (Ã1)–(Ã5) hold for given N, χ̃1, χ̃3, T . If (A6) holds for infinitely many
k0 ∈ Nodd (e.g. if (A6’) is true) then there exist infinitely many distinct T -periodic real-valued
weak solutions of the Maxwell problem (1), (2), (3) in the sense of Definition 1.1 with finite
and uniformly bounded electromagnetic energy per unit square along the y, z-direction.

2.3. Numerical illustrations, discussion, and some open questions. In the following
we apply the numerical scheme outlined in Appendix D and show results for the profile wt of
the electric field, cf. (11) or (16). The breathers we obtain analytically are ground states in
the sense that they are minimizers of the energy functional E discussed in Section 3. Here we
show approximations to these ground states. We consider particular potentials χ̃1 and χ̃1 which
are compatible with the parameter choices of Theorem 1.2. For the periodic case χ̃∗

1 = χ̃per
1

we show in Figure 1 four images which cover both choices of the nonlinearity (time-averaged
and instantaneous) and both choices of the geometry (cylindrical and slab). For the step case
χ̃∗
1 = χ̃step

1 also four images covering both types of nonlinearities and both types of geometries
are shown in Figure 2.

The following observations can be made leading to open questions or conjectures:



EXISTENCE OF TRAVELING BREATHER SOLUTIONS 11

Figure 1. Periodic potential outside [−R,R]: intensity (approximated) of elec-
tric field of breather solutions to Theorem 1.2 in reduced coordinates (cf. (11) and
(16)) over 2 time periods, with potentials χ̃1 (orange) and χ̃3 (blue). Parameters
are T = 4, ω = π

2
, c = 2

3
, a = 45

16
, b = 35

18
, d = 3

4
, R = P = 2, θ = 2

5
, γ = m = n = 1,

κ ≡ 1. Top to bottom: Nins and cylindrical geometry; Nins and slab geometry;
Nav and cylindrical geometry with R = 43

20
instead; Nav and slab geometry.
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Figure 2. Step potential outside [−R,R]: intensity (approximated) of electric
field of breather solutions to Theorem 1.2 in reduced coordinates (cf. (11) and
(16)) over 2 time periods, with potentials χ̃1 (orange) and χ̃3 (blue). Parameters
are T = 4, ω = π

2
, c = 2

3
, a = 9

4
, b = 1

4
, d = 23

20
, R = 2, ρ = γ = m = n = 1, κ ≡ 1.

Top to bottom: Nins and cylindrical geometry; Nins and slab geometry; Nav and
cylindrical geometry with R = 9

4
instead; Nav and slab geometry.
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• Although it is in general impossible to tell whether a computed solution is a global or just
a local minimizer, the numerical minimization scheme in the instantaneous case always
ends up in the same state (up to time shifts) independently of the initial state. One
may therefore conjecture that ground states are unique up to shifts in time. Moreover,
they seem to be even in time.

• Ground states for time-averaged nonlinearities seem to be more smooth than for instan-
taneous nonlinearities. Can one show improved regularity of ground states for time-
averaged nonlinearities?

• For time-averaged nonlinearities one can consider monochromatic solutions with fre-
quencies kω provided κ̂2k = 0 (see discussion below). In the cylindrical setting we found
both monochromatic and polychromatic breathers (depending on the chosen param-
eters), whereas in the slab setting we only found monochromatic breathers. Can one
prove that in the slab setting ground states are monochromatic? Under which parameter
conditions in the cylindrical setting are ground states monochromatic/polychromatic?

A monochromatic breather has a profile w of the form

w(r, t) = Re[v(r)ek(t)] =
1
2
v(r)ek(t) +

1
2
v(r)e−k(t)

for some function v. It is compatible with the nonlinearity in the time-averaged case if κ̂2k = 0,
since then the nonlinearity

Nav(w) =
1
4
Re[κ̂2k(v

3e3k + |v|2vek) + 2κ̂0|v|2vek] = κ̂0

2
Re[|v|2vek]

is also monochromatic along monochromatic functions. The bottom images in Figures 1 and 2
always depict monochromatic breathers (for the slab geometry, time-averaged nonlinearity with
κ ≡ 1, and frequency index k = 1). All other images show polychromatic breathers. Further-
more, for the time-averaged nonlinearity one can state that if there exists a nontrivial breather
w then there also exists a monochromatic breather with frequency index k ∈ Nodd provided
κ̂2k = 0 and

∫∞
0
Lkŵk · ŵk rdr < 0.

The instantaneous nonlinearity N = Nins however is not compatible with monochromatic
breathers, hence all breathers for N = Nins are necessarily polychromatic, and they have
infinitely many excited frequency indices k.

3. Reduction to a bounded domain problem

From now on we assume that assumptions (A1)–(A6) are satisfied, and we set

V (r) := −(χ̃1(r) + 1− c−2) and Γ(r) := −χ̃3(r),(18)

allowing us to write (12) as

−wrr − 1
r
wr +

1
r2
w − V (r)wtt − Γ(r)N(wt)t = 0, r ∈ [0,∞), t ∈ T(19)

where V ≥ 0,Γ ≥ 0 on [0, R] due to (A3). We will show that (19) can be reduced to a variational
problem (22) below, where the conditions (15) on κ are essential.

We consider functions w which are T/2–antiperiodic in time. This is compatible with the
structure of (19), in particular with the cubic nonlinearity, and we use the suffix “anti” to
denote spaces consisting of functions which are T/2–antiperiodic in time.
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Using the fundamental solutions ϕk given by (A4) we can further make the ansatz

w(r, t) =

{
u(r, t), 0 ≤ r < R,∑

k∈Zodd
αkϕk(r)ek(t), r > R.

where αk ∈ C and u ∈ H1
rad,anti([0, R]× T) are to be determined. Note that α−k = αk since w,

ϕk being real-valued together with ϕ−k = ϕk imply α−kϕ−k = αkϕk.

We want to ensure that w and wr taken from inside and outside match at r = R. This leads
to the following conditions:

u(R, t) =
∑

k∈Zodd

αkϕk(R)ek(t), ur(R, t) =
∑

k∈Zodd

αkϕ
′
k(R)ek(t).(20)

By assumption (A5) we have ϕk(R) ̸= 0 for almost all k ∈ Zodd. Let

F := {k ∈ Zodd : ϕk(R) = 0} ⊆ Zodd

denote the finite exclusion set. The exceptional indices k ∈ F have to be treated differently
than the regular indices k ∈ R := Zodd \ F. Note also that due to assumption (A5) there exist
constants c⋆, C⋆ > 0 such that

|ϕk(R)| ≥ c⋆∥ϕk∥L2
rad([R,∞)), |ϕ′

k(R)| ≤ C⋆|k|∥ϕk∥L2
rad([R,∞)),

|ϕ′
k(R)|

|ϕk(R)|
≤ C⋆

c⋆
|k|(21)

hold for all k ∈ R.

Let us show the difference between F and R: for k ∈ F equations (20) reduce to

ûk(R) = 0 and αk =
û′k(R)

ϕ′
k(R)

,

whereas for k ∈ R we have

αk =
ûk(R)

ϕk(R)
and û′k(R) =

ϕ′
k(R)

ϕk(R)
ûk(R).

Thus we formally obtain the following boundary value problem for u:
−urr − 1

r
ur +

1
r2
u− V (r)utt − Γ(r)N(ut)t = 0 in [0, R]× T,

û′k(R) =
ϕ′
k(R)

ϕk(R)
ûk(R) for k ∈ R,

ûk(R) = 0 for k ∈ F.

(22)

The formal calculation will be justified in the proof of Theorem 2.1 when we establish the
weak-solution property. Problem (22) again is variational and solutions are critical points of
the functional E given by

(23)

E(u) = EI(u)− EB(u) where

EI(u) :=

∫
[0,R]×T

(
1
2
u2r +

1
2

(
1
r
u
)2

+ 1
2
V (r)u2t +

1
4
Γ(r)N(ut)ut

)
rd(r, t)

EB(u) :=
R

2

∑
k∈R

ϕ′
k(R)

ϕk(R)
|ûk(R)|2
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subject to the constraints ûk(R) = 0 for k ∈ F. Indeed, for a (sufficiently regular) solution u
and a sufficiently smooth function φ : [0, R]× T → R we have

0 =

∫
[0,R]×T

(
−urr − 1

r
ur +

1
r2
u− V (r)utt − Γ(r)N(ut)t

)
φ rd(r, t)

=

∫
[0,R]×T

(
urφr +

1
r2
uφ+ V (r)utφt + Γ(r)N(ut)φt

)
rd(r, t)−R

∫
T
ur(R, t)φ(R, t) dt

=

∫
[0,R]×T

(
urφr +

1
r2
uφ+ V (r)utφt + Γ(r)N(ut)φt

)
rd(r, t)−R

∑
k∈R

ϕ′
k(R)

ϕk(R)
ûk(R)φ̂k(R)

= E ′(u)[φ].

Here we used φ̂k(R) = 0 for k ∈ F and that by Plancherel

R

∫
T
ur(R, t)φ(R, t) dt = R

∫
T
ur(R, t)φ(R, t) dt = R

∑
k∈R

ϕ′
k(R)

ϕk(R)
ûk(R)φ̂k(R)

so that this quantity is real and thus coincides with E ′
B(u)[φ] = Re

[
R
∑

k∈R
ϕ′
k(R)

ϕk(R)
ûk(R)φ̂k(R)

]
.

We further used that EN(u) :=
∫
[0,R]×T

(
1
4
Γ(r)N(ut)ut

)
rd(r, t) satisfies

E ′
N(u)[φ] =

∫
[0,R]×T

(Γ(r)N(ut)φt) rd(r, t).

Indeed, for N = Nins we have

EN(u) =
1
4

∫
[0,R]×T

(
Γ(r)u4t

)
rd(r, t), hence E ′

N(u)[φ] =

∫
[0,R]×T

(
Γ(r)u3tφt

)
rd(r, t).

If N = Nav, using that κ is even by (15) one has∫
T
(κ ∗ (utφt))u

2
t dt =

∫
T

∫
T
κ(t− τ)ut(τ)φt(τ)ut(t)

2 dτ dt

=

∫
T

∫
T
κ(τ − t)ut(τ)φt(τ)ut(t)

2 dt dτ =

∫
T
(κ ∗ u2t )utφt dτ,

and therefore EN(u) =
1
4

∫
[0,R]×T(Γ(r)(κ ∗ u2t )u2t ) rd(r, t) does satisfy

E ′
N(u)[φ] =

1
2

∫
[0,R]×T

(
Γ(r)(κ ∗ utφt)u

2
t + Γ(r)(κ ∗ u2t )utφt

)
rd(r, t)

=

∫
[0,R]×T

(
Γ(r)(κ ∗ u2t )utφt

)
rd(r, t).

As a next step we properly define the functional E and investigate its properties.

Definition 3.1. Define the norm ∥ · ∥N depending on the nonlinearity N by

∥v∥Nins
:=

(∫
[0,R]×T

v4 rd(r, t)

)1/4

= ∥v∥L4
rad([0,R]×T)

and

∥v∥Nav
:=

(∫ R

0

(∫
T
v2 dt

)2

rdr

)1/4

= ∥v∥L4
rad([0,R];L2(T)).
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Remark 3.2. We have

∥v∥L2
rad([0,R]×T) ≤

√
R

4√2
∥v∥Nav

, ∥v∥Nav
≤ ∥v∥Nins

, and
∫
[0,R]×T

Γ(r)N(v)v rd(r, t) ≂ ∥v∥4N .

The first two estimates immediately follow from Hölder’s inequality. The last estimate is clear
for N = Nins since N(v)v = v4 and Γ is bounded and strictly positive by assumption (A1). For
N = Nav we have ∫

T
N(v)v d(t) =

∫
T

∫
T
κ(t− τ)v2(r, τ)v2(r, t) dτ dt

so that

ess inf
[0,R]

Γ ·minκ · ∥v∥4N ≤
∫
[0,R]×T

Γ(r)N(v)v rd(r, t) ≤ ess sup
[0,R]

Γ ·maxκ · ∥v∥4N .

Proposition 3.3. The functionals E,EI , EB given by (23) are well-defined and differentiable
on the reflexive Banach space

YN :=

{
u ∈ W 1,1

loc,anti([0, R]× T)
∣∣∣∣ ur, 1ru ∈ L2

rad([0, R]× T),
∥ut∥N <∞, ûk(R) = 0 for k ∈ F

}
with norm

∥u∥YN
:= ∥ur∥L2

rad([0,R]×T) +
∥∥1
r
u
∥∥
L2
rad([0,R]×T) + ∥ut∥N .

The derivative is given by

E ′(u)[φ] =

∫
[0,R]×T

(
urφr +

1
r2
uφ+ V (r)utφt + Γ(r)N(ut)φt

)
rd(r, t)−R

∑
k∈R

ϕ′
k(R)

ϕk(R)
ûk(R)φ̂k(R).

Furthermore, EI is sequentially weakly lower semicontinuous, EB is sequentially weakly con-
tinuous, and E is sequentially weakly lower semicontinuous as well as coercive. Therefore E
attains its minimum E⋆ := inf E = E(u⋆) and u⋆ is a critical point of E.

Proof. Using assumption (A1) and Remark 3.2 one can show in a standard way that EI is well-
defined and differentiable. The formula for the derivative follows from the calculations above.
Since V ≥ 0 the quadratic terms of EI are convex, and the same holds for the remaining
part EN since Γ ≥ 0 together with assumption 15 in the time-averaged case. Therefore EI is
(sequentially) weakly lower semicontinuous.

With (21) we obtain |EB(u)| ≤ C0∥u(R, · )∥2H1/2(T), so from compactness of the trace (see
Lemma B.5) it follows that EB is sequentially weakly continuous and in particular continuous.

It remains to show that E is coercive. Using Remark 3.2 and Lemma B.5 with ε := 1
4C0

we
estimate

E(u) ≥ 1
2
∥ur∥2L2

rad
+ 1

2

∥∥1
r
u
∥∥2
L2
rad

+ c1
4
∥ut∥4N − C0

(
ε∥ur∥2L2

rad
+ C(ε)∥ut∥2N

)
= 1

4
∥ur∥2L2

rad
+ 1

2

∥∥1
r
u
∥∥2
L2
rad

+ c1
4
∥ut∥4N − C0C(ε)∥ut∥2N

for some c1 > 0. Thus E(u) → ∞ as ∥u∥YN
→ ∞. Using [34, Chapter I, Theorem 1.2] we find

that E attains its infimum at a critical point, which completes the proof. □
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Next we show that assumption (A6) is a sufficient condition for the solution u⋆ obtained above
to be nontrivial.2

Proposition 3.4. The minimal energy level of E satisfies E⋆ < 0 and hence u⋆ ̸= 0.

Proof. Let k0 ∈ R be as in (A6) and recall that λ = ω∥V ∥1/2
L∞([0,R]). Define

f(r) := I1(λk0r), u(r, t) := εf(r)(ek0(t) + e−k0(t))

where I1 is the modified Bessel functions of first kind, i.e., it satisfies(
−∂2r − 1

r
∂r +

1
r2

+ 1
)
I1 = 0, I1(0) = 0.

We calculate

E(u) =

∫
(0,R)×T

(
1
2
u2r +

1
2
(1
r
u)2 + 1

2
V (r)u2t +

1
4
Γ(r)N(ut)ut

)
rd(r, t)− R

2

∑
k∈Zodd

ϕ′
k(R)

ϕk(R)
|ûk(R)|2

= ε2
(∫ R

0

(
(f ′)2 + (1

r
f)2 + ω2k20V (r)f 2

)
rdr −

Rϕ′
k0
(R)

ϕk0(R)
f(R)2

)
+O(ε4)

≤ ε2
(∫ R

0

f
(
−f ′′ − 1

r
f ′ + 1

r2
f + λ2k20f

)
rdr + [rff ′]

R
0 −

Rϕ′
k0
(R)

ϕk0(R)
f(R)2

)
+O(ε4)

= ε2Rf(R)2
(
f ′(R)

f(R)
−
ϕ′
k0
(R)

ϕk0(R)

)
+O(ε4).

We have f(R) > 0 and by assumption (A6) also

f ′(R)

f(R)
−
ϕ′
k0
(R)

ϕk0(R)
=
λk0I

′
1(λk0R)

I1(λk0R)
−
ϕ′
k0
(R)

ϕk0(R)
< 0.

Thus E(u) < 0 for ε > 0 sufficiently small, which completes the proof. □

4. Approximation by finitely many harmonics

In this section we discuss approximations of the minimizers of E by finitely many harmonics

u(r, t) ≈
∑

k∈Zodd
|k|≤K

ûk(r)ek(t),

that is we consider E on the subspace Y K
N of YN defined next.

Definition 4.1. Let K ∈ Nodd. Then we define

Y K
N := {u ∈ YN : ûk ≡ 0 for |k| > K}.

First we discuss the canonical projection from YN to Y K
N

2One can show that (A6) is also necessary for u⋆ ̸= 0 in the case where V is constant on [0, R].
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Lemma 4.2. For K ∈ Nodd, define the operator

SK : YN → Y K
N , SK [u](r, t) =

∑
k∈Zodd
|k|≤K

ûk(r)ek(t).

Then the operators SK are uniformly bounded in B(YN) and SKu → u in YN as K → ∞ for
all u ∈ YN .

Proof. For p ∈ (1,∞) the Fourier cutoff operators SK defined by

SK : Lp
anti(T) → Lp

anti(T), SK [f ](t) =
∑

k∈Zodd
|k|≤K

f̂kek(t).

are uniformly bounded and SKf → f in Lp
anti(T) as K → ∞ (see [18, Theorem 4.1.8 and Corol-

lary 4.1.3]). By acting on the time variable only, SK extend to uniformly bounded operators

SK : Lq
rad([0, R];L

p
anti(T)) → Lq

rad([0, R];L
p
anti(T))

with SKu → u in Lq
rad([0, R];L

p
anti(T)) as K → ∞. Then from SK [ur] = (SKu)r, S

K [ut] =
(SKu)t, and SK [1

r
u] = 1

r
(SKu) it follows that SK : YN → Y K

N are also uniformly bounded
operators and SKu→ u in YN as K → ∞. □

Next we show that the minimal energy level E⋆ can be approximated from within Y K
N .

Lemma 4.3. For every K ∈ Nodd there exists uK,⋆ ∈ Y K
N such that EK,⋆ := inf E|Y K

N
= E(uK,⋆).

Furthermore lim
K→∞

EK,⋆ = E⋆ holds.

Proof. Arguing as in Proposition 3.3, one can show that there exists a minimizer uK,⋆ ∈ Y K
N of

E|Y K
N

. Setting uK := SK(u⋆) we find

E(u⋆) = E⋆ ≤ EK,⋆ ≤ E(uK).(24)

Using uK → u⋆ as K → ∞ and that E is continuous, the second claim follows from (24) in the
limit K → ∞. □

As a next step we establish uniform estimates on the minimizers uK,⋆. First, we introduce the
fractional time derivative |∂t|s and a quantity QN that behaves like a norm stronger than ∥ · ∥N .

Definition 4.4. For s ∈ R we define the fractional time derivative |∂t|s as the Fourier multiplier
with symbol |ωk|s, i.e. Fk|∂t|s = |ωk|sFk.

Definition 4.5. For N = Nins we define the quantity

QNins
(v) :=

(∫
[0,R]×T

(
|∂t|

1/2(v|v|)
)2
rd(r, t)

)1/4

.

For N = Nav we define the quantity

QNav(v) :=

(∫ R

0

∥v(r, ·)∥2L2(T)∥|∂t|
1/2v(r, ·)∥2L2(T) rdr

)1/4

.
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Remark 4.6. For N = Nins by Lemma B.3 we have∫
[0,R]×T

Γ(r)Nins(v)|∂t|v rd(r, t) ≥ c∗QNins
(v)4,

with c∗ = 1
2
ess inf [0,R] Γ > 0 whereas for N = Nav using Lemma B.4 (with constants c1, C2) we

have ∫
[0,R]×T

Γ(r)Nav(v)|∂t|v rd(r, t) ≥ c∗QNav(v)
4 − C∗∥v∥4Nav

with c∗ = c1 ess inf [0,R] Γ and C∗ = C2 ess sup[0,R] Γ. In particular,∫
[0,R]×T

N(v)|∂t|v rd(r, t) ≥ c∗QN(v)
4 − C∗∥v∥4N

holds for both choices of N .

The minimizers uK,⋆ formally are solutions of
SK [−urr − 1

r
ur +

1
r2
u− V (r)utt − Γ(r)N(ut)t] = 0 in [0, R]× T,

û′k(R) =
ϕ′
k(R)

ϕk(R)
ûk(R) for k ∈ R, |k| ≤ K,

ûk(R) = 0 for k ∈ F, |k| ≤ K.

Here the main part −∂2r − 1
r
∂r+

1
r2
−V (r)∂2t −Γ(r)∂tN(∂t · ) is elliptic by (A3), which is why we

expect the solution u to have increased regularity. Often this is shown by testing the problem
against derivatives of the solution. In Proposition 4.7, we obtain improved regularity by testing
the problem against |∂t|uK,⋆. However, with this method it is impossible to obtain even more
regularity because when testing against |∂t|suK,⋆ with s > 1 one can no longer control the
appearing boundary terms.

Proposition 4.7. There exist constants C1, . . . , C5 > 0 independent of K such that the follow-
ing holds:

(a)
∥∥uK,⋆

∥∥
YN

≤ C1,

(b)
∥∥∥|∂t|1/2uK,⋆

r

∥∥∥
L2
rad([0,R]×T)

≤ C2,

(c)
∥∥∥1
r
|∂t|

1/2uK,⋆
∥∥∥
L2
rad([0,R]×T)

≤ C3,

(d) QN

(
uK,⋆
t

)
≤ C4,

(e)
∥∥uK,⋆(R, · )

∥∥
H1(T) ≤ C5.

Proof. Since E is coercive (see Proposition 3.3), there exists C1 > 0 such that E(u) > 0
holds for all u ∈ YN with ∥u∥YN

> C1. Using E(uK,⋆) = minE|Y K
N

≤ E(0) = 0 we conclude∥∥uK,⋆
∥∥
YN

≤ C1, so that (a) holds.

For (b)–(e) we first note that

|||u||| =
∑

k∈Zodd
|k|≤K

(
∥û′k∥L2

rad([0,R]) +
∥∥1
r
ûk
∥∥
L2
rad([0,R])

+ ∥ûk∥L4
rad([0,R])

)
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defines an equivalent norm on Y K
N . Thus the operators |∂t|s are bounded on Y K

N for all s ∈ R.
In particular, |∂t|uK,⋆ ∈ Y K

N . Using V ≥ 0 on [0, R] and (21) we calculate

0 = E ′(uK,⋆)[|∂t|uK,⋆]

=

∫
[0,R]×T

(
uK,⋆
r |∂t|uK,⋆

r + 1
r2
uK,⋆|∂t|uK,⋆ + V (r)uK,⋆

t |∂t|uK,⋆
t + Γ(r)N(uK,⋆

t )|∂t|uK,⋆
t

)
rd(r, t)

−R
∑

k∈Zodd

ϕ′
k(R)

ϕk(R)
ω|k|

∣∣Fk[u
K,⋆](R)

∣∣2
≥
∫
[0,R]×T

((
|∂t|

1/2uK,⋆
r

)2
+
(

1
r
|∂t|

1/2uK,⋆
)2

+ Γ(r)N(uK,⋆
t )|∂t|uK,⋆

t

)
rd(r, t)

− C0R
∑

k∈Zodd

ωk2
∣∣Fk[u

K,⋆](R)
∣∣2.

Using further

C0R
∑

k∈Zodd

ωk2
∣∣Fk[u

K,⋆](R)
∣∣2 ≤ C̃0

∥∥uK,⋆(R, ·)
∥∥2
H1(T),

Remark 4.6, Lemma B.7 with ε = 1
2C̃0

as well as aX2 − bX ≥ X − (b+1)2

4a
, we obtain

0 ≥ 1
2

∥∥∥|∂t|1/2uK,⋆
r

∥∥∥2
L2
rad

+
∥∥∥1
r
|∂t|

1/2uK,⋆
∥∥∥2
L2
rad

+ c∗QN

(
uK,⋆
t

)4
− C∗

∥∥∥uK,⋆
t

∥∥∥4
N
− C̃0C(ε)QN

(
uK,⋆
t

)2
≥ 1

2

∥∥∥|∂t|1/2uK,⋆
r

∥∥∥2
L2
rad

+
∥∥∥1
r
|∂t|

1/2uK,⋆
∥∥∥2
L2
rad

+QN

(
uK,⋆
t

)2
− (C̃0C(ε) + 1)2

4c∗
− C∗C4

1 .

(25)

With C := (C̃0C(ε)+1)2

4c∗
+ C∗C4

1 the estimates (b)–(d) follow from (25) where

C2 :=
√
2C, C3 := C4 :=

√
C,

and lastly (e) follows from (b) and (d) using Lemma B.7 again. □

The following result is the most important result in this section. It shows how a minimizer u
of E gains additional regularity via the approximation by finitely many harmonics. This will
be the key to establish regularity of the solutions of (19) across the boundary at r = R.

Proposition 4.8. Up to a subsequence, the limit u = limK→∞ uK,⋆ exists in YN . The function
u is a minimizer of E and satisfies

(a) ∥u∥YN
≤ C1,

(b)
∥∥∥|∂t|1/2ur∥∥∥

L2
rad([0,R]×T)

≤ C2,

(c)
∥∥∥1
r
|∂t|

1/2u
∥∥∥
L2
rad([0,R]×T)

≤ C3,

(d) QN(ut) ≤ C4,
(e) ∥u(R, · )∥H1(T) ≤ C5,

where the constants C1, . . . , C5 are the same as in Proposition 4.7.
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Proof. We only consider the case N = Nav, as for N = Nins one can argue similarly. Then due
to Proposition 4.7 and the definition of QNav the weak limits

uK,⋆ ⇀ u in YN ,

|∂t|
1/2uK,⋆

r ⇀ f in L2
rad([0, R]× T),

1
r
|∂t|

1/2uK,⋆ ⇀ g in L2
rad([0, R]× T),

∥uK,⋆
t ∥L2(T)|∂t|

1/2uK,⋆
t ⇀ h in L2

rad([0, R]× T),
uK,⋆(R, · )⇀ b in H1(T)

exist for K → ∞ up to a subsequence and satisfy ∥u∥YN
≤ C1, ∥f∥L2

rad
≤ C2, ∥g∥L2

rad
≤ C3,

∥h∥L2
rad

≤ C4, ∥b∥H1 ≤ C5. Using the properties of the functional E from Proposition 3.3
and Lemma 4.3 we further obtain

E⋆ ≤ E(u) ≤ lim
K→∞

E(uK,⋆) = lim
K→∞

EK,⋆ = E⋆,

so that E(u) = E⋆ = limK→∞E(uK,⋆). In particular u is a minimizer of E.

Also, since EB(u
K,⋆) → EB(u) for K → ∞, we obtain EI(u

K,⋆) → EI(u) as K → ∞. From
this it follows that uK,⋆ → u in YN as K → ∞ as we show next. Since uK,⋆ ⇀ u we see that

1
r
uK,⋆ ⇀ 1

r
u, uK,⋆

r ⇀ ur in L2
rad([0, R]× T), uK,⋆

t ⇀ ut in ∥ · ∥N .
Moreover, by weak sequential lower semicontinuity we have

EI(u) =
1
2
∥ur∥2L2

rad
+ 1

2

∥∥1
r
u
∥∥2
L2
rad

+ 1
2

∥∥V 1/2ut
∥∥2
L2
rad

+ 1
4

∥∥Γ1/4ut
∥∥4
Nav

≤ 1
2
lim inf
K→∞

∥∥uK,⋆
r

∥∥2
L2
rad

+ 1
2
lim inf
K→∞

∥∥1
r
uK,⋆

∥∥2
L2
rad

+ 1
2
lim inf
K→∞

∥∥∥V 1/2uK,⋆
t

∥∥∥2
L2
rad

+ 1
4
lim inf
K→∞

∥∥∥Γ1/4uK,⋆
t

∥∥∥4
Nav

≤ 1
2
lim sup
K→∞

∥∥uK,⋆
r

∥∥2
L2
rad

+ 1
2
lim inf
K→∞

∥∥1
r
uK,⋆

∥∥2
L2
rad

+ 1
2
lim inf
K→∞

∥∥∥V 1/2uK,⋆
t

∥∥∥2
L2
rad

+ 1
4
lim inf
K→∞

∥∥∥Γ1/4uK,⋆
t

∥∥∥4
Nav

≤ lim sup
K→∞

EI(u
K,⋆) = EI(u).

Notice that in the second inequality we have replaced one lim inf by a lim sup and in the last in-
equality we used that lim supn→∞ an+

∑p
i=1 lim infn→∞ bin ≤ lim supn→∞(an+

∑p
i=1 b

i
n) which fol-

lows from supn∈N an+
∑p

i=1 infn∈N b
i
n ≤ supn∈N(an+

∑p
i=1 b

i
n). It follows that ∥ur∥2L2

rad([0,R]×T) =

lim infK→∞
∥∥uK,⋆

r

∥∥2
L2
rad([0,R]×T) = lim supK→∞

∥∥uK,⋆
r

∥∥2
L2
rad([0,R]×T). Combining weak convergence

uK,⋆
r ⇀ ur with convergence of the norms

∥∥uK,⋆
r

∥∥
L2
rad

→ ∥ur∥L2
rad

, we find that uK,⋆
r → ur in

L2
rad([0, R] × T) as K → ∞. With a similar argument we find 1

r
uK,⋆ → 1

r
u in L2

rad([0, R] × T)
and uK,⋆

t → ut in ∥ · ∥Nav
as K → ∞. Together, this shows uK,⋆ → u in YN as K → ∞.

It remains to show the estimates (b)–(e). These follow from the identities

f = |∂t|
1/2ur, g = 1

r
|∂t|

1/2u, h = ∥ut∥L2(T)|∂t|
1/2ut, b = u(R, · ),

where we only discuss h = ∥ut∥L2(T)|∂t|
1/2ut as an example. First, by definition of QN and

convergence uK,⋆ → u in YN we have
∥∥uK,⋆

∥∥
L2(T)u

K,⋆ → ∥u∥L2(T)u in L2
rad([0, R] × T). Taking

the Fourier transform, for k ∈ Zodd we find

Fk[
∥∥uK,⋆

t

∥∥
L2(T)u

K,⋆
t ] → Fk[∥ut∥L2(T)ut]
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and also √
ω|k|Fk[

∥∥uK,⋆
t

∥∥
L2(T)u

K,⋆
t ] = Fk[

∥∥uK,⋆
t

∥∥
L2(T)|∂t|

1/2uK,⋆
t ]⇀ Fk[h]

in L2
rad([0, R]) as K → ∞. Thus Fk[h] =

√
ω|k|Fk[∥ut∥L2(T)ut], i.e. h = |∂t|

1/2(∥ut∥L2(T)ut) =

∥ut∥L2(T)|∂t|
1/2ut. □

5. Proof of Theorems 2.1 and 2.3

The proof of Theorem 2.1 is split into two parts. First, using results from Sections 3–4, we show
in Proposition 5.2 that there exists a weak solution to the problem (19) in the sense of Defini-
tion 5.1 below. In Proposition 5.4 we show that from the solution of (19), one can reconstruct a
solution of Maxwell’s equations (1)–(3), and that this solution has finite electromagnetic energy
per unit segment in z-direction.

Definition 5.1. A function w : (0,∞)× T → R is called a T -periodic weak solution to (19) if
w lies in

X :=
{
w ∈ W 1,1

loc ((0,∞)× T) : 1
r
w,wr, wt ∈ L2

rad([0,∞)× T),
∥∥wt|[0,R]×T

∥∥
N
<∞

}
.

and satisfies the equation∫
[0,∞)×T

(
wrφr +

1
r2
wφ+ V (r)wtφt + Γ(r)N(wt)φt

)
rd(r, t) = 0

for all φ ∈ X.

Proposition 5.2. There exists a nontrivial weak solution to (19) in the sense of Definition 5.1.

We prepare the proof of Proposition 5.2 with an estimate on the fundamental solutions ϕk.

Lemma 5.3. There exists a constant C > 0 such that ∥ϕ′
k∥L2

rad([R,∞)) ≤ C|k|∥ϕk∥L2
rad([R,∞))

holds for all k ∈ Zodd.

Proof. By assumption we have∥∥ϕ′′
k +

1
r
ϕ′
k

∥∥
L2
rad([R,∞))

=
∥∥ 1
r2
ϕk + k2ω2V ϕk

∥∥
L2
rad([R,∞))

≤ k2
(

1
R2 + ω2∥V ∥∞

)
∥ϕk∥L2

rad([R,∞))

Due to [1, Lemma 5.5] the inequality

∥ϕ′
k∥L2

rad([R,∞)) ≤ C0

(
ε
∥∥ϕ′′

k +
1
r
ϕ′
k

∥∥
L2
rad([R,∞))

+ 1
ε
∥ϕk∥L2

rad([R,∞))

)
holds for some C0 > 0. Choosing ε = 1

|k| , the claim follows with C = C0(
1
R2 +ω

2∥V ∥∞+1). □

Proof of Proposition 5.2. Let u denote the minimizer of E obtained through Proposition 4.8.
Then u is nonzero by Proposition 3.4. As motivated in Section 3 we define

w(r, t) :=

{
u(r, t), r < R,∑

k∈F
û′
k(R)

ϕ′
k(R)

ϕk(r)ek(t) +
∑

k∈R
ûk(R)
ϕk(R)

ϕk(r)ek(t) r > R.
(26)

First we show that û′k(R) exists for all k ∈ Zodd. To do this, let ε ∈ (0, R). Then for
ψ ∈ C∞

c ((ε, R);C) we have
0 = E ′(u)[Re[ψ(r)ek(t)]]
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= Re

[∫ R

0

(
û′k(r)ψ

′(r) +
[

1
r2
ûk(r) + k2ω2V (r)ûk(r)− ikωΓ(r)Fk[N(ut)](r)

]
ψ(r)

)
rdr

]
.

Since ψ was arbitrary, this shows that ûk ∈ H1([ε, R]) is a weak solution to

û′′k = −1
r
û′k +

1
r2
ûk + k2ω2V ûk − ikωΓFk[N(ut)] on [ε, R].(27)

Note that the right-hand side of (27) lies in L4/3([ε, R]). Thus ûk ∈ W 2,4/3([ε, R]) and solves
(27) pointwise. In particular, we have ûk ∈ C1([ε, R]) and therefore û′k(R) exists.

Next we show that w lies in X. Clearly, w is real-valued, and 1
r
w,wr, wt ∈ L2

rad([0, R]×T) and
N(wt)wt ∈ L1

rad([0, R]×T). Since the antiperiodicity of w forces the zero-th Fourier mode to van-
ish, we see that ∥w∥L2

rad([R,∞)×T) and hence ∥1
r
w∥L2

rad([R,∞)×T) are bounded by ∥wt∥L2
rad([R,∞)×T).

Therefore, it remains to show that wr, wt ∈ L2
rad([R,∞)×T) since the function values at r = R

match according to the construction of w.

Using (21), Proposition 4.8, and Lemma 5.3 we find∑
k∈R

∥ŵ′
k∥

2
L2
rad([R,∞)) =

∑
k∈R

∣∣∣∣ ûk(R)ϕk(R)

∣∣∣∣2∥ϕ′
k∥

2
L2
rad([R,∞))

≲
∑
k∈R

k2|ûk(R)|2 ≲ ∥u(R, · )∥2H1(T) <∞,

∑
k∈R

ω2k2∥ŵk∥2L2
rad([R,∞)) =

∑
k∈R

ω2k2
∣∣∣∣ ûk(R)ϕk(R)

∣∣∣∣2∥ϕk∥2L2
rad([R,∞))

≲
∑
k∈R

k2|ûk(R)|2 ≲ ∥u(R, · )∥2H1(T) <∞.

Since the finite sum
∑

k∈F
û′
k(R)

ϕ′
k(R)

ϕk(r)ek(t) belongs to H1
rad([R,∞)×T) this shows that the sum

w(r, t) =
∑

k∈Zodd
ŵk(r)ek(t) converges in H1

rad([R,∞) × T). It remains to show that w is a
weak T -periodic solution to (19) in the sense of Definition 5.1. That is, we need to verify

I[φ] :=

∫
[0,∞)×T

(
wrφr +

1
r2
wφ+ V (r)wtφt + Γ(r)N(wt)φt

)
rd(r, t) = 0

for all φ ∈ X. Since wr, w, wt, N(wt) are T/2-antiperiodic in time, it follows that I[φ] = 0 for
T/2-periodic φ. So from now on let φ be T/2-antiperiodic in time. We calculate

I[φ] =

∫
[0,R]×T

(
urφr +

1
r2
uφ+ V (r)utφt + Γ(r)N(ut)φt

)
rd(r, t)

+
∑
k∈F

û′k(R)

ϕ′
k(R)

∫ ∞

R

(
ϕ′
kφ̂

′
k +

1
r2
ϕkφ̂k + k2ω2V (r)ϕkφ̂k

)
rdr

+
∑
k∈R

ûk(R)

ϕk(R)

∫ ∞

R

(
ϕ′
kφ̂

′
k +

1
r2
ϕkφ̂k + k2ω2V (r)ϕkφ̂k

)
rdr

=

∫
[0,R]×T

(
urφr +

1
r2
uφ+ V (r)utφt + Γ(r)N(ut)φt

)
rd(r, t)

−
∑
k∈F

û′k(R)

ϕ′
k(R)

·Rϕ′
k(R)φ̂k(R)−

∑
k∈R

ûk(R)

ϕk(R)
·Rϕ′

k(R)φ̂k(R)

(28)
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If in addition φ̂k(R) = 0 holds for all k ∈ F, then

I[φ] =

∫
[0,R]×T

(
urφr +

1
r2
uφ+ V (r)utφt + Γ(r)u3tφt

)
rd(r, t)−R

∑
k∈R

ϕ′
k(R)

ϕk(R)
ûk(R)φ̂k(R)

= E ′(u)[φ|[0,R]×T] = 0

where we have used φ|[0,R]×T ∈ YN . Now we want to conclude I[φ] = 0 in the general case
where φ ∈ X but φ̂k(R) ̸= 0 for some k ∈ F. Note that since φ is real-valued we have the
decomposition

X = {φ ∈ X : φ̂k(R) = 0 for all k ∈ F, k > 0} ⊕ linR{Re[ψek],Re[iψek] : k ∈ F, k > 0}
for any ψ ∈ C∞

c ((0,∞)) with ψ(R) ̸= 0. By linearity it suffices to show the identity I[Re[ψ(r)ek(t)]] =
0 = I[Re[iψ(r)ek(t)]] for all k ∈ F. Using (28) we calculate

I[Re[ψ(r)ek(t)]]

= Re

[∫ R

0

(
û′kψ

′ +
[

1
r2
ûk + k2ω2V (r)ûk − ikωΓ(r)Fk[N(ut)](r)

]
ψ
)
rdr −Rû′k(R)ψ(R)

]
= Re

[∫ R

0

(
−û′′k − 1

r
û′k +

1
r2
ûk + k2ω2V (r)ûk − ikωΓ(r)Fk[N(ut)]

)
ψ rdr

]
= 0,

where the last equality follows from (27) with ε := min suppψ. Replacing ψ by iψ in the above
calculation, we obtain also I[Re[iψ(r)ek(t)]] = 0. □

Proposition 5.4. Let w be a T -periodic weak solution to (19) in the sense of Definition 5.1.
Then the fields D,E,B,H given by

D(x, t) = ε0
(
(1 + χ1(x))wt(r, t− 1

c
z) + χ3(x)N(wt)(r, t− 1

c
z)
)
· (−y

r
, x
r
, 0)⊤,

E(x, t) = wt(r, t− 1
c
z) · (−y

r
, x
r
, 0)⊤,

B(x, t) = −
(
1
r
w(r, t− 1

c
z) + wr(r, t− 1

c
z)
)
· (0, 0, 1)⊤ − 1

c
wt(r, t− 1

c
z) · (x

r
, y
r
, 0)⊤,

H(x, t) = 1
µ0
B(x, t),

where x = (x, y, z) and r =
√
x2 + y2 are weak solutions to Maxwell’s equations (1)–(3) in

the sense of Definition 1.1. Furthermore, the electromagnetic energy is finite orthogonal to the
direction of propagation, i.e.∫

R×R×[z0,z0+1]

(
D · E+B ·H

)
d(x, y, z)

is uniformly bounded w.r.t. z0, t0.

Proof. We use cylindrical coordinates (x, y, z) = (r cos(θ), r sin(θ), z). We abbreviate

er = (x
r
, y
r
, 0)⊤, eθ = (−y

r
, x
r
, 0)⊤, ez = (0, 0, 1)⊤

and use the representations

∇ϕ = ∂rϕ · er + 1
r
∂θϕ · eθ + ∂zϕ · ez,

∇× Φ =
(
1
r
∂θΦ

z − ∂zΦ
θ
)
er + (∂zΦ

r − ∂rΦ
z)eθ +

1
r

(
∂r(rΦ

θ)− ∂θΦ
r
)
ez

where Φ = Φrer+Φθeθ+Φzez. For better readability, we omit the domain [0,∞)×[0, 2π]×R×R
when integrating with cylindrical coordinates as well as arguments, so e.g. w = w(r, t − 1

c
z).
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In particular, ∂zw = −1
c
∂tw = −1

c
wt holds, which we use below. Now let ϕ ∈ C∞

c (R4;R) and
Φ ∈ C∞

c (R4;R3). Identities (2) and (3) hold by definition, so it remains to check the four
integral identities of Definition 1.1, beginning with∫

R4

(
D · ∇ϕ

)
d(x, y, z, t) =

∫ (
Dθ∂θϕ

)
rd(r, θ, z, t) = 0,

where the integral above is zero because D is independent of θ. Next,∫
R4

(
B · ∇ϕ

)
d(x, y, z, t) =

∫ (
−(1

r
w + wr)∂zϕ− 1

c
wt∂rϕ

)
rd(r, θ, z, t)

=

∫ (
−1

r
∂r(rw)∂zϕ+ ∂zw∂rϕ

)
rd(r, θ, z, t) =

∫ (
w(∂r∂zϕ− ∂z∂rϕ)

)
rd(r, θ, z, t) = 0.

For the third integral we have∫
R4

(
E · ∇ × Φ−B · ∂tΦ

)
d(x, y, z, t)

=

∫ (
wt(∂zΦ

r − ∂rΦ
z) + (1

r
w + wr)∂tΦ

z + 1
c
wt∂tΦ

r
)
rd(r, θ, z, t)

=

∫ (
∂tw(∂zΦ

r − ∂rΦ
z) + 1

r
∂r(rw)∂tΦ

z − ∂zw∂tΦ
r
)
rd(r, θ, z, t)

=

∫ (
w(−∂t∂zΦr + ∂t∂rΦ

z − ∂r∂tΦ
z + ∂z∂tΦ

r)
)
rd(r, θ, z, t) = 0.

For the last identity, using integration by parts, that integrals with ∂θ vanish, and the definitions
of V,Γ in (18), we have∫

R4

−H · ∇ × Φ−D · ∂tΦd(x, t)

= 1
µ0

∫ (
(1
r
w + wr)

1
r
(∂r(rΦ

θ)− ∂θΦ
r) + 1

c
wt(

1
r
∂θΦ

z − ∂zΦ
θ) rd(r, θ, z, t)

−
∫
ε0((1 + χ1)wt + χ3N(wt))∂tΦ

θ
)
rd(r, θ, z, t)

= 1
µ0

∫ (
∂rw∂rΦ

θ + 1
r
(∂rwΦ

θ + w∂rΦ
θ) + 1

r2
wΦθ − 1

c
∂zw∂tΦ

θ
)
rd(r, θ, z, t)

− 1
µ0

∫ (
ε0µ0(1 + χ1)∂tw∂tΦ

θ + ε0µ0χ3N(∂tw)∂tΦ
θ
)
rd(r, θ, z, t)

= 1
µ0

∫ (
∂rw∂rΦ

θ + 1
r2
wΦθ + V (r)∂tw∂tΦ

θ + Γ(r)N(wt)∂tΦ
θ
)
rd(r, θ, z, t)

= 1
µ0

∫
[0,∞)×T

(
wrφr +

1
r2
wφ+ V (r)wtφt + Γ(r)N(wt)φt

)
rd(r, t) = 0.

where in the last line w = w(r, t) is no longer in traveling coordinates, φ is given by

φ(r, t) := T
∑
k∈Z

∫
[0,2π]×R

Φθ(r, θ, z, t+ kT + 1
c
z) d(θ, z),

and the last equality holds due to Definition 5.1. To show finiteness of the energy, using

D · E+B ·H = ε0(1 + χ1)w
2
t + εχ3N(wt)wt +

1
µ0
(1
r
w + wr)

2 + 1
c2µ0

w2
t
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we calculate∫
R×R×[z0,z0+1]

(
D · E+B ·H

)
d(x, y, z)

= 2πc
µ0

∫
[0,∞)×[t0−(z0+1)/c,t0−z0/c]

(
(−V (r) + 2

c2
)w2

t − Γ(r)N(wt)wt + (1
r
w + wr)

2
)
rd(r, t),

which is uniformly bounded w.r.t. t0 and z0 because V,Γ are bounded and w lies in X. □

Now that we have completed the proof of Theorem 2.1 it remains to show the multiplicity result
of Theorem 2.3.

Proof of Theorem 2.3. Let K denote the (infinite) set of numbers k0 ∈ Nodd for which (A6)
holds. For k0 ∈ K we consider the subspace

YN,k0 :=
{
u ∈ YN

∣∣ u is T
2k0

-antiperiodic in time
}
⊆ YN .

Similarly to the proof of Proposition 5.2 one can show that E attains a minimum value on YN,k0

and that from the minimizer, one can construct a weak solution of (19) using (26). Here we use
that problem (19) is compatible with considering T

2k0
-antiperiodic in time functions, i.e., N(wt)

is T
2k0

-antiperiodic in time if wt has this property. The solution of (19) gives rise to a solution
of Maxwell’s equations by Proposition 5.4.

Repeating this for all k0 ∈ K, we obtain a family {(Dk0 ,Ek0 ,Bk0 ,Hk0 , ) : k0 ∈ K} of solutions
to Maxwell’s equations. Each solution has a minimal nonzero time-period that is a divisor of
T
k0

. Thus, this family has minimal periods becoming arbitrarily small and therefore infinitely
many among the solutions must be mutually distinct. □

6. Modifications in the slab setting

Here we sketch modifications that have to be done in Sections 3 to 5 in order to prove Theo-
rems 2.4 and 2.5. First our solution ansatz becomes

w(x, t) =

{
u(x, t), |x| < R,∑

k∈Zodd
αkϕ̃k(|x|)ek(t), |x| > R

where u ∈ H1
anti,even([−R,R]× T) is to be determined and

αk =
û′k(R)

ϕ̃
′
k(R)

, ûk(R) = 0 for k ∈ F,

αk =
ûk(R)

ϕ̃k(R)
, û′k(R) =

ϕ̃
′
k(R)

ϕ̃k(R)
ûk(R) for k ∈ R.

We use the subscript “even” to denote functions that are even in space.

The restriction to even functions is done in order to shorten this chapter, but it is not necessary.
For example, one could instead look for functions u that are odd in space, or not impose any
spatial symmetry. In the latter case one need not make any symmetry assumptions on V,Γ
(see assumption (Ã1)) if instead one requires fundamental solutions to exist both on [R,∞)
and (−∞,−R].
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Going back to the problem, we (formally) obtain the boundary value problem
−uxx − V (x)utt − Γ(x)N(ut)t = 0 in [0, R]× T,
û′k(R) =

ϕ̃
′
k(R)

ϕ̃k(R)
ûk(R) for k ∈ R,

ûk(R) = 0 for k ∈ F

ux(0, · ) = 0

for u, where the last condition comes from u being even in space. This problem has variational
structure as solutions are critical points of

Ẽ(u) =

∫
[0,R]×T

1
2
u2x +

1
2
V (x)u2t +

1
4
Γ(x)N(ut)ut d(x, t)− 1

2

∑
k∈R

ϕ̃
′
k(R)

ϕ̃k(R)
|ûk(R)|2

subject to the constraints ûk(R) = 0 for k ∈ F. We can proceed like in Sections 3 to 5 in order
to prove existence, regularity, and multiplicity of some minimizers of Ẽ. The main differences to
the radial setting are the following: First, we do not work in radially weighted Sobolev spaces,
so rdr is replaced by dx and Lp

rad by Lp. Further, the radial Laplacian ∂2r +
1
r
∂r is replaced

by the 1d Laplacian ∂2x. In addition, the term 1
r2
w is absent in problem (17), so that this term

(and related terms, e.g. 1
r
u in E and part (c) of Proposition 4.7) do not appear in the slab

setting.

So we define ∥ · ∥∼N and Q̃N like ∥ · ∥N and QN but without the radial weight. Notice that Ẽ is
well-defined on the reflexive Banach space

ỸN :=
{
u ∈ H1

anti,even([−R,R]× T) : ∥ut∥∼N <∞, ûk(R) = 0 for k ∈ F
}
.

More noticeable changes have to be made in the proof of Proposition 3.4. There we made the
ansatz

u(r, t) = εI1(λk0r)(ek0(t) + e−k0(t))

in order to show that inf E < 0, and I1 was a solution of

(−∂2r − 1
r
∂r +

1
r2

+ 1)I1 = 0.

For the slab setting the natural ansatz is

u(x, t) = ε cosh(λk0x)(ek0(t) + e−k0(t))

since (−∂2x + 1) cosh = 0, which also explains the way we formulated assumption (Ã6).

We note that the trace embeddings can be adapted to the slab setting, i.e., the trace map
tr : ỸN → H1/2(T), v 7→ v(R, · ) is compact and the estimates appearing in Lemmas B.5 and B.7
also hold with Lp

rad, ∥ · ∥N , QN replaced by Lp, ∥ · ∥∼N , Q̃N . This is because the trace of v only
depends on the function v in a small neighborhood of x = R, and the radial weight is not
singular at x = R.

Lastly, the electromagnetic waves reconstructed from the profile w for the slab geometry are
given by

D(x, t) = ε0
(
(1 + χ1(x))wt(x, t− 1

c
y) + χ3(x)N(wt)(x, t− 1

c
y)
)
· (0, 0, 1)⊤,

E(x, t) = wt(r, t− 1
c
y) · (0, 0, 1)⊤,

B(x, t) = (1
c
wt(x, t− 1

c
y), wx(x, t− 1

c
y), 0)⊤,
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H(x, t) = 1
µ0
B(x, t),

which can be shown similar to Proposition 5.4 for the cylindrical geometry.

7. Further regularity estimate and bifurcation phenomenon

Checking the assumptions (A1)–(A6) and (Ã1)–(Ã6) one sees that they depend not directly on
χ1 but on χc

1 := χ1 − c−2. As we show next, for every solution of Theorem 2.1 or Theorem 2.3
the L∞([0, R];L2(T))-norm of the E-field is finite and can be bounded by a constant depending
only on χc

1 (as well as on χ3 and κ). A possible physical interpretation of this result is described
below.

Proposition 7.1. Let D,E,B,H be a solution of Maxwell’s equation as in Theorem 2.1 or
Theorem 2.3. Then ∥E∥L∞([0,R];L2(T)) is finite. The same holds true in the slab setting for
solutions from Theorem 2.4 or Theorem 2.5.

Proof. We focus on the radial setting and time-averaged nonlinearity. As in Section 5 let
D,E,B,H be a solution of Maxwell’s equations such that |E|2 = w2

t where w is a weak solution
of (12) in the sense of Definition 5.1. We begin by formally multiplying (19) with −wtt and
integrating w.r.t. t to obtain

0 =

∫
T

(
−wrr − 1

r
wr +

1
r2
w − V (r)wtt − Γ(r)((κ ∗ w2

t )wt)t
)
(−wtt) dt

=

∫
T
−wtrrwt − 1

r
wtrwt +

1

r2
w2

t + V (r)w2
tt + 2Γ(r)(κ ∗ wtwtt)wtwtt + Γ(r)(κ ∗ w2

t )w
2
tt dt.

Writing f(r) := 1
2

∫
Tw

2
t dt, we have

0 = −f ′′ − 1
r
f ′ +

[∫
T

1
r2
w2

t + w2
tr + V (r)w2

tt dt+ Γ(r)J ′′(wt)[wtt, wtt]

]
where J(v) := 1

4

∫
T(κ ∗ v2)v2 dt is convex by assumption (15) and therefore all terms in the

square bracket are non-negative. This combined with f(0) = 0, f(R) ≥ 0 shows that f is
increasing on [0, R]. Thus ∥wt∥L2(T) is bounded on [0, R] by ∥wt(R, · )∥L2(T), which is finite by
Proposition 4.8.

To justify this formal calculation, we argue as in Section 4: since w|[0,R]×T was obtained as
the limit in YN of a sequence uK,⋆ defined in Lemma 4.3, we set fK(r) := 1

2

∫
T(u

K,⋆
t )2 dt and

get that fK → f in L2
rad([0, R]). Since uK,⋆ ∈ Y K

N and time-derivatives are bounded on Y K
N ,

we have (fK)′, 1
r
fK ∈ L1([0, R]) so that fK is continuous and it indeed satisfies fK(0) = 0.

The formal argument above can therefore be applied to fK and yields that fK is monotone
increasing on [0, R]. Thus f is monotone increasing and hence bounded by the constant 1

2
C5

from Proposition 4.8, completing the proof.

The proof for the slab setting is similar; the main difference is that at zero we have a Neumann
condition wx(0, t) = 0 instead of a Dirichlet condition. The proof with the instantaneous
nonlinearity follows by setting κ = δ0 above. □
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Recall the constitutive relation

D = ε0E+P(E) = ε0(1 + χ1(x))E+ ε0χ3(x)(κ ∗ |E|2)E

for the time-averaged nonlinearity. The quantity

ε0(1 + χ1(x)) + ε0χ3(x)(κ ∗ |E|2)

may be called the effective permittivity and can be estimated from below by

ε0(1 + χ1(x)) + ε0χ3(x)(κ ∗ |E|2)
≥ ε0(1 + c−2 − ∥χc

1∥L∞(R3))− ε0∥χ3∥L∞(R3)∥κ∥L∞(T)∥E∥
2
L∞([0,R];L2(T)).

As described above, the existence of E hinges on χc
1 = χ1 − c−2 and the norm ∥E∥2L∞([0,R];L2(T))

only depends on χc
1 and not on χ1. Hence, if c > 0 is sufficiently small then the effective

permittivity is positive, which gives the waveguide the character of a dielectric. In other words,
for time-averaged nonlinearities and for sufficiently small propagation speed c > 0, the fields
are not strong enough to change the dielectric character of the waveguide. It is open if the
same holds for instantaneous nonlinearities.

Finally, we comment on the bifurcation phenomenon outlined in Section 1.2 in the context of
the cylindrical geometry. We consider Vd(r) = −(χ̃1,d(r) + 1 − c−2), Γ = −χ̃3(r), where the
material parameters χ̃1,d, χ̃3 are as in Section 1.2 and where we emphasize the d-dependance
of χ̃1 and V by adding a lower index d. In fact, d will be seen as a bifurcation parameter. Due
to the ansatz E(x, t) = wt(r, t − 1

c
z) · (−y

r
, x
r
, 0)⊤ and the fact that u(·, t) = w(·, t) |[0,R] solves

the boundary value problem (22), the bifurcation phenomenon can be explained on the level of
u as a solution of the d-dependent boundary value problem (22) on [0, R]× T. Recall that on
[0, R] the function Vd(r) = −(d+ 1− c−2) is just a positive constant.

Let us first fix a value d∗ as in Theorem 1.2 so that assumptions (A1)–(A6) hold. Then we
consider the linear eigenvalue problem

−urr − 1
r
ur +

1
r2
u+ (d∗ + 1− c−2)︸ ︷︷ ︸

−Vd∗ (r)

utt = λutt in [0, R]× T,

û′k(R) =
ϕ′
k(R)

ϕk(R)
ûk(R) for k ∈ R,

ûk(R) = 0 for k ∈ F.

(29)

The smallest eigenvalue λ can be obtained by minimizing

Ed∗,lin(u) =

∫
[0,R]×T

(
u2r +

(
1
r
u
)2

+ Vd∗(r)u
2
t

)
rd(r, t)− 2EB(u)

subject the constraint ∫
[0,R]×T

u2t rd(r, t) = 1

on the space

Ylin =
{
u ∈ W 1,1

loc,anti((0, R]× T) | ur, 1ru, ut ∈ L2
rad([0, R]× T)

}
.

Since assumptions (A1)–(A6) hold for d∗, the negative minimum λ < 0 is attained. It appears
as a Lagrange multiplier which coincides with the smallest eigenvalue. Moreover, the minimizer
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ulin satisfies (29) so that
−ulin,rr − 1

r
ulin,r +

1
r2
ulin + (d+ 1− c−2)︸ ︷︷ ︸

−Vd(r)

ulin,tt = (d− d∗)ulin,tt in [0, R]× T,

û′lin,k(R) =
ϕ′
k(R)

ϕk(R)
ûlin,k(R) for k ∈ R,

ûlin,k(R) = 0 for k ∈ F.

where we have set d∗ = d∗ + λ. In particular, for the bifurcation parameter d ∈ (d∗, d
∗] we find

that

Ed,lin(ulin) =

∫
[0,R]×T

(
1
2
u2lin,r +

1
2

(
1
r
ulin
)2

+ 1
2
Vd(r)u

2
lin,t

)
rd(r, t)− EB(ulin) < 0.

Hence, for a sufficiently small multiple ε > 0 we can insert εulin into the functional Ed for the
nonlinear problem and get Ed(εulin) < 0. This shows that E⋆

d = infYN
Ed < 0 and it is therefore

the substitute for (A6) which we do not verify for d ∈ (d∗, d
∗). Since (A1)–(A5) continue to

hold for all d ∈ (d∗, d
∗] we conclude that the nonlinear problem

−urr − 1
r
ur +

1
r2
u− Vd(r)utt − Γ(r)N(ut)t = 0 in [0, R]× T,

û′k(R) =
ϕ′
k(R)

ϕk(R)
ûk(R) for k ∈ R,

ûk(R) = 0 for k ∈ F.

has a nontrivial ground state ud. Let us now show that indeed ud → 0 in suitable norms as
d→ d∗, which shows bifurcation from the zero-solution at d = d∗ and continuation of solutions
as d runs from d∗ up to the primarily chosen value d∗.

Lemma 7.2. For d ∈ [d∗, d
∗] any minimizer ud of Ed satisfies∥∥ud∥∥

YN
= O((d− d∗)

1/4)

as d↘ d∗.

Proof. We first show that
∥∥udt∥∥N is uniformly bounded for d ∈ [d∗, d

∗]. As in the proof of
Proposition 3.3 we find

Ed(u) =

∫
[0,R]×T

(
1
2
u2r +

1
2

(
1
r
u
)2

+ 1
2
Vd(r)u

2
t +

1
4
Γ(r)N(ut)ut

)
rd(r, t)− EB(u)

≥
∫
[0,R]×T

(
1
2
u2r +

1
4
Γ(r)N(ut)ut

)
rd(r, t)− C0∥u(R, · )∥2H1/2(T)

≥
∫
[0,R]×T

(
1
2
u2r +

1
4
Γ(r)N(ut)ut

)
rd(r, t)− 1

4
∥ur∥2L2

rad([0,R]×T) − C0C(
1

4C0
)∥ut∥2N

≳ ∥ut∥2N(∥ut∥
2
N − C0C(

1
4C0

)).

If we insert ud and use E⋆
d = Ed(u

d) ≤ 0 the claim on the uniform boundedness of
∥∥udt∥∥N

follows.

Next we claim that E⋆
d = O(d− d∗). To see this, we find

Ed(u) ≥ Ed,lin(u) =

∫
[0,R]×T

(
1
2
u2r +

1
2

(
1
r
u
)2

+ 1
2
Vd(r)

)
u2t rd(r, t)− EB(u)



EXISTENCE OF TRAVELING BREATHER SOLUTIONS 31

≥ (d∗ − d)

∫
[0,R]×T

u2t rd(r, t)

≳ (d∗ − d)∥ut∥2N
by Remark 3.2. The claim follows by inserting u = ud.

Now we can use the equality

0 > E⋆
d = Ed(u

d)− 1

2
E ′

d(u
d)[ud] = −1

4

∫
[0,R]×T

Γ(r)N(udt )u
d
t rd(r, t)

and the previous step to conclude
∥∥udt∥∥4N = O(E∗

d) = O(d− d∗). Finally,

0 = E ′
d(u

d)[ud] =

∫
[0,R]×T

(
(udr)

2 +
(
1
r
ud
)2

+ Vd(r)(u
d
t )

2 + Γ(r)N(udt )u
d
t

)
rd(r, t)− 2EB(u

d)

≥ 1
2

∥∥udr∥∥2L2
rad([0,R]×T) +

∥∥∥ud

r

∥∥∥2
L2
rad([0,R]×T)

+ (c−2 − 1− d∗)
∥∥udt∥∥2L2

rad([0,R]×T) − 2C0C(
1

4C0
)
∥∥udt∥∥2N

implies that
∥∥udr∥∥L2

rad([0,R]×T),
∥∥∥ud

r

∥∥∥
L2
rad([0,R]×T)

,
∥∥udt∥∥L2

rad([0,R]×T) = O(
∥∥udt∥∥N) = O((d − d∗)

1/4) as

claimed. □

Appendix A. The fractional Laplacian

In this section, we present some results on the fractional Laplacian on the torus, and related
spaces. They are not given in the most general form available, but in a form which is sufficient
for our applications. We begin by giving the definition of the fractional Sobolev-Slobodeckij
space W s,p(T).

Definition A.1. For s ∈ (0, 1), σ > 0 and p ∈ [1,∞), we set

[f ]pW s,p(T) :=

∫
T

∫
R

|f(t)− f(t+ h)|p

|h|1+sp dh dt

∥f∥pW s,p(T) := ∥f∥pLp(T) + [f ]pW s,p(T),

W s,p(T) :=
{
f ∈ Lp(T) : [f ]W s,p(T) <∞

}
,

as well as W 0,p(T) := Lp(T) and W s,∞(T) := Cs(T). Setting

K̃σ(h) := T
∑
k∈Z

|h+ kT |−1−σ we have [f ]pW s,p(T) =

∫
T

∫
T
K̃sp(h)|f(t)− f(t+ h)|p dh dt

Note that K̃σ(h) ≃ d(0, h)−1−σ where d denotes the metric on T.

Next we show that the fractional Laplacian |∂t|sf = F−1[|ωk|sf̂k] can be expressed using a
singular integral.

Lemma A.2. Let s ∈ (0, 2) and f ∈ C1,1(T). Then

|∂t|sf(t) = Cs

∫
R

2f(t)− f(t+ h)− f(t− h)

|h|1+s dh
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=

∫
T
Ks(h)(2f(t)− f(t+ h)− f(t− h)) dh

holds where

Cs :=

(
2

∫
R

1− cos(η)

|η|1+s dη

)−1

and Ks(h) := CsK̃s(h).

For a proof see [33, Theorem 2.5] where the case T = 2π is discussed3. In [33] a principal
value formulation is used which can be avoided by using the above symmetric representation,
as discussed in [30, Lemma 3.2].

Related to Lemma A.2 is the fact that the seminorm [f ]W s,2(T) coincides with ∥|∂t|sf∥2 up to a
constant, and in particular that W s,2(T) = Hs(T).
Lemma A.3. Let s ∈ (0, 1) and u ∈ Hs(T). Then

∥|∂t|su∥2L2(T) = C2s[u]
2
W s,2(T) =

∫
T

∫
T
K2s(h)|f(t)− f(t+ h)|2 dh dt

holds.

This can be shown in the same way as [30, Proposition 3.4]. Formally, it follows from Lemma A.2
(with 2s instead of s) by multiplying the identity with f and then integrating.

Next, let us note that the fractional Gagliardo-Nirenberg inequality of Lemma A.4 and the
Sobolev embedding theorem of Lemma A.5 hold on the torus.

Lemma A.4. Let s1, s2 ∈ [0, 1), θ ∈ (0, 1), p1, p2 ∈ [1,∞] and s = θs1+(1−θ)s2, 1
p
= θ

p1
+ 1−θ

p2
.

Then ∥f∥W s,p(T) ≲ ∥f∥θW s1,p1 (T)∥f∥
1−θ
W s2,p2 (T) holds.

Lemma A.5. Let s1, s2 ∈ (0, 1), p1, p2 ∈ [1,∞] with s2 < s1 and 1
p2

− s2 ≥ 1
p1

− s1 with strict
inequality for s1p1 = 1. Then ∥f∥W s2,p2 (T) ≲ ∥f∥W s1,p1 (T) holds.

Proof of Lemmas A.4 and A.5. We first remark that both results hold if W s,p(T) is replaced
by W s,p(I) where I is a bounded interval. This space is defined by

W s,p(I) =

{
f ∈ Lp(I) : [f ]W s,p(I) :=

(∫
I

∫
I

|f(x)− f(y)|p

|x− y|1+sp dx dy

) 1
p

<∞

}
for s ∈ (0, 1), 1 ≤ p <∞, and W s,∞(I) = Cs(I), W 0,p(I) = Lp(I).

Indeed, on intervals the Gagliardo-Nirenberg inequality holds by [8]. Also on intervals we have
from [30] that W s1,p1(I) ↪→ Lq(I) for 1

q
= 1

p1
−s1 if s1p1 < 1, W s1,p1(I) ↪→ Lq(I) for 1 ≤ q <∞ if

s1p1 = 1, and that W s1,p1(I) ↪→ Cα(I) for −α = 1
p1
− s1 for s1p1 > 1. From these properties we

can deduce the claimed embedding estimate on intervals by applying the Gagliardo-Nirenberg
inequality (on intervals).

Then, the statements of Lemmas A.4 and A.5 follow from the results on intervals since the
norms ∥f∥W s,p(T) and ∥f∥W s,p([0,2T ]) are equivalent for periodic f . □

3The constant in [33, Theorem 2.5] has a typo: σ needs to be replaced by 2σ. Then the constant in [33]
coincides with Cs up to a factor of 2.
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Additionally, the following version of the Kenig-Ponce-Vega inequality (cf. [19]) holds on the
torus.

Lemma A.6. Let f, g ∈ C∞(T), s ∈ (0, 2), s1, s2 ∈ (0, 1) with s < s1+s2, and p, p1, p2 ∈ [1,∞]
with 1

p
= 1

p1
+ 1

p2
. Then

∥|∂t|s(fg)− f |∂t|sg − g|∂t|sf∥Lp(T) ≲ [f ]W s1,p1 (T)[g]W s2,p2 (T)

holds.

Proof. We only consider the case p1, p2 <∞. Using Lemma A.2, we write

|∂t|s(fg)(t)− f(t)|∂t|sg(t)− g(t)|∂t|sf(t)

=

∫
T
Ks(h)(2f(t)g(t)− f(t+ h)g(t+ h)− f(t− h)g(t− h)) dh

− f(t)

∫
T
Ks(h)(2g(t)− g(t+ h)− g(t− h)) dh

− g(t)

∫
T
Ks(h)(2f(t)− f(t+ h)− f(t− h)) dh

= −
∫
T
Ks(h)

(
(f(t)− f(t+ h))(g(t)− g(t+ h)) + (f(t)− f(t− h))(g(t)− g(t− h))

)
dh

= −2

∫
T
Ks(h)(f(t)− f(t+ h))(g(t)− g(t+ h)) dh

Now let r := 1− 1
p
+ s− s1 − s2 <

1
p′

. Using Hölder’s inequality twice we estimate∥∥∥∥∫
T
Ks(h)(f(t)− f(t+ h))(g(t)− g(t+ h)) dh

∥∥∥∥
Lp(T)

≤
∫
T
∥Ks(h)|f(t)− f(t+ h)||g(t)− g(t+ h)|∥Lp(T) dh

≤
∥∥d(0, h)−r

∥∥
Lp′ (T)∥Ks(h)d(0, h)

r|f(t)− f(t+ h)||g(t)− g(t+ h)|∥Lp(T×T)

≲

∥∥∥∥ p1

√
K̃s1p1(h)|f(t)− f(t+ h)|

∥∥∥∥
Lp1 (T×T)

∥∥∥∥ p2

√
K̃s2p2(h)|f(t)− f(t+ h)|

∥∥∥∥
Lp2 (T×T)

= [f ]W s1,p1 (T)[g]W s2,p2 (T)

where we have also used that

Ks(h)d(0, h)
r ≃ d(0, h)−1−s+r = d(0, h)

− 1
p1

−s1− 1
p2

−s2 ≃ p1

√
K̃s1p1(h)

p2

√
K̃s2p2(h). □

Lastly, we make the following observation on derivatives of time-antiperiodic functions. The
proof, which follows via the Fourier transform from the fact that the zero Fourier mode vanishes,
is omitted.

Lemma A.7. Let the function v ∈ L1(T) be T
2
-antiperiodic in time. Then for any s > 0 and

σ ∈ R we have

∥v∥L2(T) ≤
1

ωs
∥|∂t|sv∥L2(T) and thus ∥|∂t|σv∥L2(T) ≤

1

ωs

∥∥|∂t|σ+sv
∥∥
L2(T).
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If furthermore Fk[v] = 0 for |k| < K, then these estimates can be improved to

∥v∥L2(T) ≤
1

(Kω)s
∥|∂t|sv∥L2(T) and ∥|∂t|σv∥L2(T) ≤

1

(Kω)s
∥∥|∂t|σ+sv

∥∥
L2(T).

Appendix B. Properties of the nonlinearities

For the instantaneous nonlinearity, it is clear that the function EN is convex. In the time-
averaged case this follows from assumption (15) together with Γ ≥ 0. Next we discuss two
conditions that are sufficient for convexity in the time-averaged setting, i.e. (15).

Lemma B.1. The convexity assumption of (15) on κ is satisfied for example if the other
assumptions hold and either maxκ ≤ 2minκ or κ̂k ≥ 0 for all k ∈ Z, or more generally if κ is
a sum of functions satisfying these conditions.

Proof. Set f : L4(T) → R, f(v) =
∫
T(κ ∗ v2)v2. Then using that κ is even we calculate

f ′′(v)[u, u] = 4

∫
T
(κ ∗ v2)u2 dt+ 8

∫
T
(κ ∗ uv)uv dt.

Part 1: If maxκ ≤ 2minκ, with c := (minκ+maxκ)/2 we can estimate

f ′′(v)[u, u] = 4

∫
T
(κ ∗ v2)u2 dt+ 8c

(∫
T
uv dt

)2

+ 8

∫
T
((κ− c) ∗ uv)uv dt

≥ 4minκ∥uv∥22 − 8∥κ− c∥∞∥uv∥22 ≥ 0.

Part 2: If instead κ̂k ≥ 0, we can estimate

f ′′(v)[u, u] ≥ 8

∫
T
(κ ∗ uv)uv dt = 8

∑
k∈Z

κ̂k|Fk(uv)|2 ≥ 0. □

Next we aim at lower bounds for E ′(u)[|∂t|u]. Using integration by parts, one sees that the
quadratic terms appearing in E ′(u)[|∂t|u] are L2-norms of suitable fractional derivatives of u.
In the next two lemmas, we investigate the remaining non-quadratic term

∫
N(ut)|∂t|ut. We

begin with the instantaneous nonlinearity.

Remark B.2. Let us give a few examples of kernels κ̃ describing the nonlinear polarization
(cf. (4)) that lead via κ(t) = T

∑
k∈Z κ̃(t+ kT ) to admissible potentials κ for (15).

(a) First, we consider

κ̃(t) =

{
0, t < 0,

(T 4 + 4t4)
−1
t, t ≥ 0

where c > 0. Let us show that the resulting κ is admissible. To do this, we write

κ̃(t) =
1

2T

(
1

T 2 + (2t− T )2
− 1

T 2 + (2t+ T )2

)
for t ≥ 0,
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so κ(t) is a telescoping series with value

κ(t) =
1

2T (T 2 + (2t− T )2)
for t ∈ [0, T ).

We see that κ is even about T
2
, and by periodicity also even about 0, and that minκ =

κ(0) = 1
4T 3 ,maxκ = κ(T

2
) = 1

2T 3 hold. Since κ is Lipschitz continuous, this combined
with Lemma B.1 show that κ satisfies (15).

(b) More generally, κ̃(t) = 1t≥0[g(2t− T )− g(2t+ T )] with even, Hölder-continuous g : R →
R is an admissible example if max[0,T ] g ≤ 2min[0,T ] g holds.

(c) Let us give another example: Consider

κ̃(t) =
∑
n∈N0

αn1[nT,(n+1)T )(t)

where (αn) ∈ ℓ1 with
∑

n∈N0
αn = 1

T
. Then κ ≡ 1 and therefore it satisfies (15).

(d) Finally, using a Debye-type exponential decay in the kernel function cf. [12], let us
consider κ̃(t) = αe−βt1t≥0 and its discretized version κ̃d(t) = α

∑∞
n=0 e

−βnT1[nT,(n+1)T )

with α, β > 0. Subject to the choice α = (1−e−βT )/T the discretized version clearly falls
into the category (c) whereas for the continuous version we get κ(t) = e−βt for t ∈ [0, T )
so that κ is neither even nor continuous on T and hence does not satisfy (15). Therefore
our results do not apply to κ̃, but can be used for κ̃d. Clearly, the smaller T > 0 the
better κ̃d approximates κ̃, and our results provide existence of breathers with frequencies
tending to infinity as T ↘ 0. This, however, does not allow for any conclusion about
breathers for nonlinear Maxwell equations with Debye-type exponential decay kernel.

Lemma B.3. The inequality

2

∫
T
v3 · |∂t|v dt ≥

∫
T

(
|∂t|

1/2(v|v|)
)2

dt(30)

holds for all v ∈ C∞(T).

Proof. We first encountered an estimate similar to (30) in [11, Proposition 2.3], and we prove
(30) in a similar fashion. Note that v|v| ∈ C1,1(T) ⊆ H1/2(T). Thus both sides of (30) are
well-defined and we may use symmetry to obtain∫

T

(
|∂t|

1/2(v|v|)
)2

dt =

∫
T
v|v| · |∂t|(v|v|) dt.

Using the representation of Lemma A.2, we calculate

2

∫
T
v3 · |∂t|v dt−

∫
T
v|v| · |∂t|(v|v|) dt

= C

∫
T

∫
R

2

h2
v(t)3

(
2v(t)− v(t+ h)− v(t− h)

)
− 1

h2
v(t)|v(t)|

(
2v(t)|v(t)| − v(t+ h)|v(t+ h)| − v(t− h)|v(t− h)|

)
dh dt

= C

∫
R

1

h2

∫
T
2v(t)3

(
v(t)− v(t+ h)

)
− v(t)|v(t)|

(
v(t)|v(t)| − v(t+ h)|v(t+ h)|

)
+ 2v(t)3

(
v(t)− v(t− h)

)
− v(t)|v(t)|

(
v(t)|v(t)| − v(t− h)|v(t− h)|

)
dt dh
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= C

∫
R

1

h2

∫
T
2v(t)3

(
v(t)− v(t+ h)

)
− v(t)|v(t)|

(
v(t)|v(t)| − v(t+ h)|v(t+ h)|

)
+ 2v(t+ h)3

(
v(t+ h)− v(t)

)
− v(t+ h)|v(t+ h)|

(
v(t+ h)|v(t+ h)| − v(t)|v(t)|

)
dt dh

= C

∫
R

1

h2

∫
T
v(t)4 + v(t+ h)4 − 2v(t)3v(t+ h)− 2v(t)v(t+ h)3 + 2v(t)|v(t)|v(t+ h)|v(t+ h)| dt dh

Next we claim that the last integrand is everywhere non-negative. To see this, abbreviate
a := v(t), b := v(t+ h). If a and b have the same sign, we find

a4 + b4 − 2a3b− 2ab3 + 2a|a|b|b| =
(
a2 + b2

)
(a− b)2 ≥ 0.

If a and b have opposite signs, we instead calculate

a4 + b4 − 2a3b− 2ab3 + 2a|a|b|b| =
(
a2 − b2

)2 − 2ab(a2 + b2) ≥ 0.

This completes the proof. □

The counterpart for the temporally averaged nonlinearity reads as follows. Its proof is very
different from the proof of the previous lemma.

Lemma B.4. There exists constants c1, C2 > 0 such that∫
T
(κ ∗ v2)v|∂t|v dt ≥ c1∥v∥2L2(T)∥|∂t|v∥

2
L2(T) − C2∥v∥4L2(T)

holds for all v ∈ C∞(T).

Proof. By 15, κ ∈ Cα(T). Inspired by the famous Kenig-Ponce-Vega inequality [19], we define
the Leibniz-defect for the fractional half-derivative as

δ = |∂t|
1/2((κ ∗ v2)v)− v|∂t|

1/2(κ ∗ v2)− (κ ∗ v2)|∂t|
1/2v.

Using Lemma A.4 and Lemma A.6 we estimate

∥δ∥2 ≲
[
κ ∗ v2

]
Cα [v]H1/2−α/2 ≤ [κ]Cα∥v∥22[v]H1/2−α/2 ≲ [κ]Cα∥v∥2+α

2 ∥v∥1−α

H1/2 .

We further have

|∂t|
1/2(κ ∗ v2) = (|∂t|

α/2κ) ∗ (|∂t|
1/2−α/2v2) = |∂t|

α/2κ ∗ (2v|∂t|
1/2−α/2v + δ̃)

with Leibniz-defect δ̃ given by

δ̃ = |∂t|
1/2−α/2(v2)− 2v|∂t|

1/2−α/2v.

By applying Lemma A.6, Lemma A.5, and Lemma A.4 for p close to 1 we obtain the estimate∥∥δ̃∥∥
p
≲ [v]2W 2p,1/4−α/6 ≲ ∥v∥2H1/4−α/8 ≲ ∥v∥1+α/2

2 ∥v∥1−α/2

H1/2
,

so that ∥∥|∂t|1/2(κ ∗ v2)
∥∥
∞ ≤ 2

∥∥|∂t|α/2κ∥∥∞∥∥v∥∥2∥∥|∂t|1/2−α/2v
∥∥
2
+
∥∥|∂t|α/2κ∥∥p′∥∥δ̃∥∥p

≲ ∥κ∥Cα

(
∥v∥1+α

2 ∥v∥1−α

H1/2 + ∥v∥1+α/2
2 ∥v∥1−α/2

H1/2

)
where we have used [33, Theorem 2.6] for the estimates on |∂t|

α/2κ.
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Next we estimate the quantity appearing in the claim:∫
T
(κ ∗ v2)v · |∂t|v dt =

∫
T
|∂t|

1/2((κ ∗ v2)v) · |∂t|
1/2v dt

=

∫
T

(
(κ ∗ v2)|∂t|

1/2v + v|∂t|
1/2(κ ∗ v2) + δ

)
· |∂t|

1/2v dt

≥
∫
T
(κ ∗ v2)(|∂t|

1/2v)2 dt

− C∥v∥2∥κ∥Cα

(
∥v∥1+α

2 ∥v∥1−α

H1/2 + ∥v∥1+α/2
2 ∥v∥1−α/2

H1/2

)∥∥∥|∂t|1/2v∥∥∥
2

− C[κ]Cα∥v∥2+α
2 ∥v∥1−α

H1/2

∥∥∥|∂t|1/2v∥∥∥
2
.

The claim now follows using∫
T
(κ ∗ v2)(|∂t|

1/2v)2 dt ≥ minκ ·
∥∥v∥∥2

2

∥∥|∂t|1/2v∥∥22
and Young’s inequality for products. □

Next we prove two important trace inequalities that are adapted to the terms appearing in our
functional. In Lemma B.5 we estimate the trace in H1/2(T) against ∥ · ∥N , and the “regularized”
embedding Lemma B.7 estimates the trace in H1(T) against QN .

Lemma B.5. The trace map

tr : YN → H
1/2(T), u 7→ u(R, · )

is well-defined and compact. Furthermore, for all ε > 0 there exists C(ε) > 0 such that

∥tru∥2H1/2(T) ≤ ε∥ur∥2L2
rad([0,R]×T) + C(ε)∥ut∥2N .(31)

holds for all u ∈ YN .

Remark B.6. By Remark 3.2 we have the continuous embedding ι : YN ↪→ H1
rad([0, R] × T),

and it is well known that the trace maps H1([0, R] × T) into H1/2(T), and the same holds for
H1

rad([0, R] × T). However, both the embedding ι and the trace map tr : Hrad([0, R] × T) →
H1/2(T) are noncompact maps. Their composition tr ◦ι however is compact, as we show below.
This is true because of the temporal decay in the embedding ι.

Proof of Lemma B.5. Since ∥ · ∥Nav
≲ ∥ · ∥Nins

by Remark 3.2 and thus YNins
↪→ YNav , if suffices

to consider the case N = Nav.

Let u ∈ H2
anti([0, R]× T). Fix some ψ ∈ C∞([0, R]) with ψ = 0 on [0, 1

2
R] and ψ(R) = 1. With

v(r, t) := ψ(r)u(r, t) we calculate

∥tru∥3H1/2(T) = ∥tr v∥3H1/2(T) ≤ C0∥|∂t|
1/2 tr v∥3L2(T)

= 3C0

∫ R

0

(
∥|∂t|

1/2v∥L2(T)

∫
T
|∂t|

1/2v · |∂t|
1/2vr dt

)
dr

= 3C0

∫ R

0

(
∥|∂t|

1/2v∥L2(T)

∫
T
|∂t|v · vr dt

)
dr
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≤ 3C0

(∫
[0,R]×T

v2r rd(r, t) ·
∫ R

0

∥|∂t|
1/2v∥2L2(T)∥|∂t|v∥2L2(T) rdr

)1/2

where the factor r can be introduced since v is supported on [1
2
R,R] × T. Using Lemma A.7,

Remark 3.2 and infT κ > 0, inf [0,R] Γ > 0 we continue the estimate

∥tru∥3H1/2(T) ≤ C1∥vr∥L2
rad([0,R]×T)∥vt∥

2
Nav

≤ C2

(
∥ut∥L2

rad([0,R]×T) + ∥ur∥L2
rad([0,R]×T)

)
∥ut∥2Nav

≤ C3

(
∥ut∥Nav

+ ∥ur∥L2
rad([0,R]×T)

)
∥ut∥2Nav

≤ C3∥u∥3YN
.

By approximation, the inequality

∥tru∥3H1/2(T) ≤ C3

(
∥ut∥Nav

+ ∥ur∥L2
rad([0,R]×T)

)
∥ut∥2Nav

can be shown to hold for all u ∈ YN , so that tr is a well-defined and bounded operator on YN .
The inequality (31) now follows immediately using Young’s inequality for products. It remains
to show compactness of the trace operator. To do this, we consider the operator

trK := tr ◦SK

for K ∈ Nodd, cf. Lemma 4.2 for a definition of the projection operators SK . Then trK is a
compact operator since it is bounded and has finite-dimensional range. Since Fk[u− SKu] = 0
for |k| < K+2, using the improved estimate from Lemma A.7 in our calculation above, we find∥∥tr(u− SKu)

∥∥3
H1/2(T) ≤

C3√
K + 2

∥∥u− SKu
∥∥3
YN
,

so that in particular∥∥tru− trK u
∥∥3
H1/2(T) =

∥∥tr(u− SKu)
∥∥3
H1/2(T) ≤

C2

(
1 +

∥∥SK
∥∥)3

√
K + 2

∥u∥3YN

holds. Using Lemma 4.2 it follows that trK → tr in B(YN ;H1/2(T)), which shows that tr is
compact. □

Next we show in Lemma B.7 the “regularized” trace inequality, which is the main tool used to
obtain improved regularity in Section 4.

Lemma B.7. For all ε > 0 there exists a constant C(ε) > 0 such that

∥tru∥2H1(T) ≤ ε
∥∥∥|∂t|1/2ur∥∥∥2

L2
rad([0,R]×T)

+ C(ε)QN(ut)
2(32)

holds for all u ∈ Y K
N and K ∈ Nodd and where C(ε) does not depend on K.

Proof. Part 1: Let N = Nins. Fix ψ ∈ C∞([0, R]) with ψ = 0 on [0, 1
2
R], ψ(R) = 1 and set

v(r, t) := ψ(r)u(r, t). Further let H denote the Hilbert transform in time, which is given by
FkH = i sign(k)Fk. Using ∂t = H|∂t| we calculate

∥tru∥3H1(T) = ∥tr v∥3H1(T)

≲ ∥tr vt∥3L2(T)
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≲
∫
T
|vt(R, · )|3 dt

= 3

∫
[0,R]×T

vtrvt|vt| d(r, t)

= 3

∫
[0,R]×T

H|∂t|
1/2vr · |∂t|

1/2(vt|vt|) d(r, t)

≤ 3

(∫
[0,R]×T

(
H|∂t|

1/2vr

)2
d(r, t) ·

∫
[0,R]×T

(
|∂t|

1/2(vt|vt|)
)2

d(r, t)

)1/2

= 3

(∫
[0,R]×T

(
ψ|∂t|

1/2ur + ψ′|∂t|
1/2u
)2

d(r, t) ·
∫
[0,R]×T

ψ4
(
|∂t|

1/2(ut|ut|)
)2

d(r, t)

)1/2

≲

(∥∥∥|∂t|1/2ur∥∥∥
L2
rad

+
∥∥∥|∂t|1/2u∥∥∥

L2
rad

)
QNins

(ut)
2

where in the last inequality we have estimated ψ2, ψ′2, ψ4 ≲ r. From Lemma A.7 we further
have ∥∥∥|∂t|1/2u∥∥∥

L2
rad

≲ ∥ut∥L2
rad

≲ ∥ut∥L4
rad

= ∥ut|ut|∥
1/2

L2
rad

≲
∥∥∥|∂t|1/2(ut|ut|)∥∥∥1/2

L2
rad

= QNins
(ut).

Combining both inequalities with Young’s inequality for products, the estimate (32) follows.

Part 2: Here we consider N = Nav. We define v as above, but now we estimate

∥tru∥3H1(T) ≲ ∥trut∥3L2(T)

= ∥tr vt∥3L2(T)

= 3

∫ R

0

(
∥vt∥L2(T)

∫
T
vtvtr dt

)
dr

= 3

∫ R

0

(
∥vt∥L2(T)

∫
T
|∂t|

1/2vt ·H|∂t|
1/2vr dt

)
dr

≤ 3

(∫
[0,R]×T

(
H|∂t|

1/2vr

)2
d(r, t) ·

∫ R

0

∥vt∥2L2(T)

∥∥∥|∂t|1/2vt∥∥∥2
L2(T)

dr

)1/2

≲

(∥∥∥|∂t|1/2ur∥∥∥
L2
rad

+
∥∥∥|∂t|1/2u∥∥∥

L2
rad

)
QNav(ut)

2

where again suppψ ⊆ [1
2
R,R] has been used. Using Lemma A.7 we further obtain

∥∥∥|∂t|1/2u∥∥∥
L2
rad

≲ ∥ut∥L2
rad

≲ ∥ut∥L4
rad([0,R];L2(T)) =

(∫ R

0

∥ut(r, ·)∥4L2(T) rdr

)1/4

≤
(∫ R

0

∥ut(r, ·)∥2L2(T)

∥∥∥|∂t|1/2ut(r, ·)∥∥∥2
L2(T)

rdr

)1/4

= QNav(ut).

Combining both estimates above with Young’s inequality for products, the estimate (32) follows.
□
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Appendix C. Examples

In this section we prove Theorem 1.2 by verifying the assumptions of Theorem 2.1 or Theo-
rem 2.4. We prepare the proof with a lemma on convergence of infinite matrix products.

Lemma C.1. Let

An =

(
1 + αn βn
γn λ+ δn

)
∈ R2×2

where |λ| < 1, and |αn| ≤ C
n2 as well as |βn|, |γn|, |δn| ≤ C

n
hold for all n ∈ N. Then the product

∞∏
n=1

An := lim
m→∞

(A1 · A2 · . . . · Am)

converges against a matrix of the form
(
∗ 0
∗ 0

)
. If all An are invertible, then

∏∞
n=1An ̸= 0.

Further, there exists a function f : (0,∞) → (0,∞) with f(0+) = 0 such that∥∥∥∥∥
∞∏
n=1

An −
(
1 0
0 0

)∥∥∥∥∥ ≤ f(C).

Proof. First we consider the product(
am bm
cm dm

)
:=

m−1∏
n=N

An

where we choose N ∈ N so large that denominators appearing in the following four constants
Ca, Cb, Cc, Cd with

Ca := 2CCb,

Cb := max

{
1

2N
N+1

− 1− 2C
N

,
C

N
N+1

− |λ| − C+2C2

N

}
,

Cc := 2CCd,

Cd := max

{
C

N(1−|λ|)
2N
N+1

− 1− 2C
N

,
C + C2

N(1−|λ|)
N

N+1
− |λ| − C+2C2

N

}
,

are positive and Ca

N
< 1 holds. We show by induction that the following estimates hold for

m ≥ N :

|am − 1| ≤ Ca(
1
N
− 1

m
), |bm| ≤ Cb

m
,

|cm| ≤ Cc

(
1
N
− 1

m

)
+ C

N
1−|λ|m−N

1−|λ| ,
∣∣dm − λm−N

∣∣ ≤ Cd

m
.

(33)

We will moreover show for the differences that

|am+1 − am| ≤ Ca

m(m+1)
|cm+1 − cm| ≤ Cc

m(m+1)
+ C

N
|λ|m−N(34)



EXISTENCE OF TRAVELING BREATHER SOLUTIONS 41

holds. First, for m = N the estimates (33) hold since aN = 1, bN = 0, cN = 0, dN = 1. For the
induction step, let us assume that (33) holds for fixed m ≥ N . Using am+1 = (1+αm)am+γmbm
as well as |am| ≤ C+

a := 1 + Ca

N
we find

|am+1 − am| ≤
C

m2
C+

a +
C

m

Cb

m
≤ (N + 1)C

N

(
C+

a + Cb

) 1

m(m+ 1)
≤ Ca

m(m+ 1)
.

This in turn implies that |am+1 − 1| ≤ |am+1 − am| + |am − 1| ≤ Ca

(
1
N
− 1

m+1

)
. Next, from

bm+1 = βmam + (λ+ δm)bm we obtain

|bm+1| ≤
C

m
C+

a + |λ|Cb

m
+
C

m

Cb

m
≤ N + 1

N

(
CC+

a + |λ|Cb +
CCb

N

)
1

m+ 1
≤ Cb

m+ 1
.

Then we use cm+1 = (1 + αm)cm + γmdm as well as |cm| ≤ C+
c := Cc

N
+ C

N(1−|λ|) to obtain

|cm+1 − cm| ≤
C

m2
C+

c +
C

m

(
|λ|m−N + Cd

m

)
≤ (N + 1)C

N

(
C+

c + Cd

) 1

m(m+ 1)
+
C

N
|λ|m−N ,

≤ Cc

m(m+ 1)
+
C

N
|λ|m−N ,

from which the desired estimate on |cm+1| follows as before. From dm+1 = βmcm + (λ+ δm)dm
we obtain ∣∣dm+1 − λm+1−N

∣∣ ≤ C

m
C+

c + |λ|Cd

m
+
C

m

(
|λ|m−N +

Cd

m

)
≤ N + 1

N

(
CC+

c + |λ|Cd + C +
CCd

N

)
1

m+ 1
≤ Cd

m+ 1
.

This shows the estimates (33), (34). It follows that bm, dm → 0 and that am, cm converge as
m → ∞. Thus we have shown that the product

∏∞
n=N An converges against a matrix of the

form
(
∗ 0
∗ 0

)
. This implies convergence of the product

∏∞
n=1An with the limit being given by

∞∏
n=1

An = [A1 · . . . · AN−1] ·
(
limm→∞ am 0
limm→∞ cm 0

)
,

which has the specified form of vanishing second column. From (33) we get |am − 1| < Ca

N
< 1

so that limm→∞ am ̸= 0. Thus
∏∞

n=1An ̸= 0 if we assume that A1, . . . , AN−1 are invertible.

It remains to show the estimate ∥∥∥∥∥
∞∏
n=1

An −
(
1 0
0 0

)∥∥∥∥∥ ≤ f(C).

We choose ∥ · ∥ to be the column sum norm. To emphasize the dependence of Ca, . . . , Cd on
the constant C, in the following we write Ca(C), . . . , Cd(C). Let C⋆ > 0 and observe that there
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exists a sufficiently large N ∈ N such that the denominators appearing in Ca(C), . . . , Cd(C) are
positive for all C ∈ (0, C⋆]. Then (33) shows that∥∥∥∥∥

∞∏
n=N

An −
(
1 0
0 0

)∥∥∥∥∥ ≤ Ca(C) + Cc(C)

N
+

C

N(1− |λ|)
=: fN(C)

holds, where fN : (0, C⋆] → (0,∞) with fN(0+) = 0. Then∥∥∥∥∥
∞∏

n=N−1

An −
(
1 0
0 0

)∥∥∥∥∥ ≤ ∥AN−1∥

∥∥∥∥∥
∞∏

n=N

An −
(
1 0
0 0

)∥∥∥∥∥+
∥∥∥∥AN−1

(
1 0
0 0

)
−
(
1 0
0 0

)∥∥∥∥
≤ max

{
1 + NC

(N−1)2
, 2C
N−1

+ |λ|
}
fN(C) +

NC
(N−1)2

=: fN−1(C)

where fN−1(0+) = 0. Repeating this N − 2 times, we find a function f1 such that f1(0+) = 0
and ∥∥∥∥∥

∞∏
n=1

An −
(
1 0
0 0

)∥∥∥∥∥ ≤ f1(C). □

The proof of Theorem 1.2 is split into four parts, because the fundamental solutions ϕk strongly
depend on both the chosen geometry (radial problem or slab problem) and on the linear po-
tential χ̃∗

1 (step potential χ̃step
1 or periodic step potential χ̃per

1 ).

For the proof, we introduce the following (non-negative) variables to denote the values of the
piecewise constant potential V = −(χ̃1 + 1− c−2):

(i) If χ̃∗
1 = χ̃per

1 , we set

α := a+ 1− c−2, β := b+ 1− c−2, δ := −(d+ 1− c−2),

where by the assumptions of Theorem 1.2 we have α, β, δ > 0 and δ < α.
(ii) If χ̃∗

1 = χ̃step
1 , let

α := a+ 1− c−2, β := −(b+ 1− c−2), δ := −(d+ 1− c−2),

where again α, β, δ > 0 by assumption.

Proof of Theorem 1.2, Part 1. First, we consider the periodic step potential χ̃per
1 with cylin-

drical geometry, i.e. (12). We verify the assumptions (A1)–(A5) and (A6’) in order to apply
Theorem 2.3. Firstly, assumptions (A1), (A2), and (A3) hold by definition.

Step 1. Here we construct the fundamental solutions ϕk based on the following idea: we
define propagation matrices MLk

(r, r′) with the property:
(
ϕk(r)
ϕ′
k(r)

)
:= MLk

(r, r′)
(
a
b

)
provides the

solution of Lkϕk = 0 at r with initial values
(
a
b

)
at r′. On subintervals where the potential

V takes constant values, MLk
can be explicitly computed. Iterating the propagation from

rn := R+nP + 1
2
θP back to r with prescribed decay r−1/2

n τn at rn, τ = min{
√

α
β
,
√

β
α
} < 1 and

sending n→ ∞ will provide the fundamental solution.

Now we start with the propagation matrices on intervals where V is constant. The general
solution of (

−∂2r − 1
r
∂r +

1
r2

− k2ω2α
)
f = 0(35)
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is given by

f(r) = AJ1(αkr) +BY1(αkr)

where Jν , Yν are the Bessel functions of first (resp. second) kind and αk := kω
√
α. Thus the

propagation matrix for (35) is given by(
f(r)
f ′(r)

)
=Mα,k(r, r

′) ·
(
f(r′)
f ′(r′)

)
with

Mα,k(r, r
′) =

(
J1(αkr) Y1(αkr)
αkJ

′
1(αkr) αkY

′
1(αkr)

)
·
(
J1(αkr

′) Y1(αkr
′)

αkJ
′
1(αkr

′) αkY
′
1(αkr

′)

)−1

.

Next we calculate the asymptotic expansion of Mα,k(r, r
′). With the asymptotics (cf. [17])

J1(z) =

√
2

πz

(
sin(z − π

4
) + 3

8z
cos(z − π

4
) +O

(
1
z2

))
,

Y1(z) =

√
2

πz

(
− cos(z − π

4
) + 3

8z
sin(z − π

4
) +O

(
1
z2

))
,

J ′
1(z) =

√
2

πz

(
cos(z − π

4
)− 7

8z
sin(z − π

4
) +O

(
1
z2

))
,

Y ′
1(z) =

√
2

πz

(
sin(z − π

4
) + 7

8z
cos(z − π

4
) +O

(
1
z2

))
as z → ∞, we find

Mα,k(r, r
′) =

√
r′

r

(
1 0
0 αk

)[( 3
8z

−1
1 7

8z

)
+O

(
1
z2

)]( cos(z − z′) sin(z − z′)
− sin(z − z′) cos(z − z′)

)
·
[( 7

8z′
1

−1 3
8z′

)
+O

(
1
z′2

)](1 0
0 1

αk

)(36)

as z, z′ → ∞, where z = αkr, z
′ = αkr

′. If, in particular, r′ − r = θP , then since

z − z′ = −kωθP
√
α ∈ π

2
Zodd,

we have cos(z − z′) = 0 and sin(z − z′) = ±1, so we can further simplify

Mα,k(r, r
′) = ±

√
r′

r

(
1 0
0 αk

)[( 7
8z′

− 3
8z

1
−1 3

8z′
− 7

8z

)
+O

(
1
z2

+ 1
z′2

)](1 0
0 1

αk

)
= ±

√
r′

r

(
1 0
0 kω

)[( 1
2kω

√
αr

1√
α

−
√
α − 1

2kω
√
αr

)
+O

(
1

kr2

)](1 0
0 1

kω

)
as kr → ∞. If we denote by rn := R + nP + 1

2
θP , r′n := R + nP +

(
1− 1

2
θ
)
P for n ∈ N0 the

points where V changes from one constant value to the other, then we have

MLk
(rn, rn+1) =Mβ,k(rn, r

′
n) ·Mα,k(r

′
n, rn+1)

= σ

√
rn+1

rn

(
1 0
0 kω

)
√

α
β

0(√
β
α
−
√

α
β

)
1

2kωrn

√
β
α

+O
(

1
kn2

)(1 0
0 1

kω

)
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as kn → ∞ where σ = − sin(kωθP
√
α) sin(kω(1− θ)P

√
β) ∈ {±1} does not depend on k. To

simplify the asymptotics, we introduce the rescaling

Sk(r) :=
√
r

(
1 0
0 1

ωk

)
and define the rescaled propagation matrices

MS
Lk
(r, r′) := Sk(r)MLk

(r, r′)Sk(r
′)−1,

MS
α,k(r, r

′) := Sk(r)Mα,k(r, r
′)Sk(r

′)−1,

MS
β,k(r, r

′) := Sk(r)Mβ,k(r, r
′)Sk(r

′)−1.

In the following we assume α > β, the case β > α can be treated similarly. We then define

Ψk(r) := lim
m→∞

(
σ−1
√

β
α

)m

MS
Lk
(r, rm).(37)

This definition is according to the idea introduced at the beginning of the proof: Ψk(r) contains
decaying fundamental solutions for a rescaled version of the operator Lk, where the geometric
decay factor

√
β
α

has been built into the solution. As we shall see, the second column of Ψk

vanishes, which reflects the fact that there can only be one solution which decays at infinity.
Next we note that

Ψk(r) = lim
m→∞

MS
Lk
(r, r0)

m−1∏
n=0

(
σ−1
√

β
α
MS

Lk
(rn, rn+1)

)
=MS

Lk
(r, r0)

∞∏
n=0

(
σ−1
√

β
α
MS

Lk
(rn, rn+1)

)
.

Using the asymptotics

σ−1

√
β

α
MS

Lk
(rn, rn+1) =

(
1 0

O
(

1
kn

)
β
α

)
+O

(
1

kn2

)
as kn → ∞ and Lemma C.1, the limit in (37) exists and is nonzero. In particular, the limit
matrix Ψk has a vanishing second column so that we can define(

ψ
(1)
k (r) 0

ψ
(2)
k (r) 0

)
:= Ψk(r).

If we also undo the rescaling and define(
ϕ
(1)
k (r)

ϕ
(2)
k (r)

)
:= Sk(r)

−1

(
ψ

(1)
k (r)

ψ
(2)
k (r)

)
then (

ϕ
(1)
k (r)

ϕ
(2)
k (r)

)
=MLk

(r, r′)

(
ϕ
(1)
k (r′)

ϕ
(2)
k (r′)

)
.

since ψ(1)
k , ψ

(2)
k satisfy the identity(

ψ
(1)
k (r)

ψ
(2)
k (r)

)
=MS

Lk
(r, r′)

(
ψ

(1)
k (r′)

ψ
(2)
k (r′)

)
.

This shows that ϕk(r) := ϕ
(1)
k (r) satisfies Lkϕk = 0 and ϕ′

k = ϕ
(2)
k so that ϕk is the sought

fundamental solution. Its properties will be verified in the next step.
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Step 2. We are left with verifying assumptions (A4), (A5), and (A6’) for the functions ϕk

obtained in Step 1. We have already seen as a result of Lemma C.1 that ϕk ̸= 0. Next we show
that ϕk ∈ L2

rad([R,∞) × T). From the asymptotics (36) we see that there exists a constant
C1 > 0 such that ∥∥MS

α,k(r, r
′)
∥∥,∥∥MS

β,k(r, r
′)
∥∥ ≤ C1

holds for all k ∈ Nodd and all r, r′ ≥ R. By Lemma C.1 there further exists a constant C2 > 0
such that ∥∥∥∥∥

∞∏
n=n0

(
σ−1
√

β
α
MS

Lk
(rn, rn+1)

)∥∥∥∥∥ ≤ C2

holds for all n0 ∈ N0 and all k ∈ Nodd.

For every r ∈ [R,∞) there exists a unique n0 ∈ N0 such that r ∈ (r′n0−1, r
′
n0
]. From

√
rϕk(r) = ψ

(1)
k (r) =

(
lim

m→∞

(
σ−1
√

β
α

)m

MS
Lk
(r, rn0)M

S
Lk
(rn0 , rm)

)
1,1

=

(
σ−1
√

β
α

)n0
(
MS

Lk
(r, rn0)

∞∏
n=n0

(
σ−1
√

β
α
MS

Lk
(rn, rn+1)

))
1,1

,

(38)

and

MS
Lk
(r, rn0) =

{
MS

α,k(r, rn0), r ∈ (r′n0−1, rn0 ]

MS
β,k(r, rn0), r ∈ (rn0 , r

′
n0
]

we obtain

r|ϕk(r)|2 ≤
(
β
α

)n0
C2

1C
2
2

and therefore also

∥ϕk∥2L2
rad([R,∞)) =

∫ ∞

R

|ϕk(r)|2 rdr ≤
∞∑

n0=0

(
β
α

)n0
C2

1C
2
2P <∞,

where we used r′n0
− r′n0−1 = P . While we obtained an L2-bound on ϕk which is uniform in k,

with the help of the equation Lkϕk = 0 one can easily show that ϕk ∈ H2
rad([R,∞)), but the

H2-bound will be k-dependent. Thus assumption (A4) holds.

Next we discuss the asymptotics of ϕk. We use

MS
α,k(r, r

′) =

(
cos(kω

√
α(r − r′)) 1√

α
sin(kω

√
α(r − r′))

−
√
α sin(kω

√
α(r − r′)) cos(kω

√
α(r − r′))

)
+O

(
1
k

)
and likewise for MS

β,k(r, r
′) as well as

∞∏
n=n0

(
σ−1
√

β
α
MS

Lk
(rn, rn+1)

)
→
(
1 0
0 0

)
as k → ∞, cf. Lemma C.1. Thus, together with (38) we obtain∫ r′n0

r′n0−1

|ϕk(r)|2 rdr
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=
(
β
α

)n0

(∫ rn0

r′n0−1

cos(kω
√
α(r − rn0))

2 dr +

∫ r′n0

rn0

cos(kω
√
β(r − rn0))

2 dr + o(1)

)
=

(
β
α

)n0
(
P
2
+ o(1)

)
as k → ∞. In particular, we have

lim inf
k→∞

∥ϕk∥2L2
rad([R,∞)) ≥

∞∑
n0=1

(
β
α

)n0 P
2
> 0.

In order to verify assumptions (A5) and (A6’) we calculate the asymptotics of ϕk(R) and ϕ′
k(R).

Setting

mα := 4ω
√
αθ P

2π
∈ Nodd,

we have
√
Rϕk(R) = ψ

(1)
k (R) =

(
MS

α,k(R, r0)
∞∏
n=0

(
σ−1
√

β
α
MS

Lk
(rn, rn+1)

))
1,1

= cos(kω
√
α(R− r0)) + o(1) = cos(kmα

π
4
) + o(1) = ± 1√

2
+ o(1)

as k → ∞. Combined with the estimates on ∥ϕk∥L2
rad

this shows the first part of assumption
(A5). Next we have

√
R

kω
ϕ′
k(R) = ψ

(2)
k (R) =

(
MS

α,k(R, r0)
∞∏
n=0

(
σ−1
√

β
α
MS

Lk
(rn, rn+1)

))
2,1

= −
√
α sin(kω

√
α(R− r0)) + o(1) =

√
α sin(kmα

π
4
) + o(1) = ±

√
α√
2
+ o(1),

which shows the second part of assumption (A5). Finally, we have

ϕ′
k(R)

kϕk(R)
= ω

√
α tan(kmα

π
4
) + o(1) = −ω

√
α(−1)

mα+k
2 + o(1)

as k → ∞, so

lim sup
k→∞

ϕ′
k(R)

kϕk(R)
= ω

√
α > ω

√
δ = ω∥V ∥1/2

L∞([0,R])

since α > δ. Thus assumption (A6’) holds, and Theorem 2.3 yields the result. □

Proof of Theorem 1.2, Part 2. Now we consider the periodic step potential with the slab ge-
ometry, i.e. (17). We verify the assumptions of Theorem 2.5 in order to apply it.

By the set-up we have that (Ã1), (Ã2), and (Ã3) hold. The determination of the fundamental
solutions ϕ̃k follows the Floquet-Bloch theory for second-order periodic differential operators.
Details can be found in [20, Appendix 6.2]. The main outcome is the following: there are two
Floquet-multipliers

ρk ∈

{
−
√
α

β
sin(km′lπ) sin(km′π),−

√
β

α
sin(km′lπ) sin(km′π)

}
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where

l =

√
β

α

1− θ

θ
and

{
2m′ = 4

√
αθω

P

2π
, 2m′l = 4

√
β(1− θ)ω

P

2π

}
⊆ Nodd

and in our setting m = 2m′, n = 2m′l. This implies that |ρk| ∈
{√

α
β
,
√

β
α

}
, so that in modulus

one of them is smaller than 1 and one of them larger than 1. For each Floquet exponent there
is a solution of Lkϕ̃k = 0 with ϕ̃k(x+P ) = ρkϕ̃k(x) for all x ∈ R. If we choose the fundamental
solution corresponding to the Floquet multiplier with modulus less than 1 then this leads to∥∥ϕ̃k

∥∥2
L2([R,∞))

=
1

1− ρk

∥∥ϕ̃k

∥∥2
L2([R,R+P ))

.

Using the normalization ϕ̃k(R) = 1 we have

ϕ̃
′
k(R) = −kω

√
α tan(kω

√
αθP

2
) = −kω

√
α tan(mk π

4
) = kω

√
α(−1)

k+m
2

and

0 < inf
k∈Nodd

∥∥ϕ̃k

∥∥2
L2([R,R+P ))

≤ sup
k∈Nodd

∥∥ϕ̃k

∥∥2
L2([R,R+P ))

<∞.

From these estimates it follows that also (Ã4)–(Ã5) hold. Moreover, since ϕ̃
′
k(R)

kϕ̃k(R)
= (−1)

k+m
2 ω

√
α

and α > δ = ∥V ∥L∞([−R,R]) the final condition (Ã6’) is true and so Theorem 2.5 yields the re-
sult. □

Proof of Theorem 1.2, Part 3. Next we consider the step potential χ̃step
1 with cylindrical ge-

ometry, i.e. problem (12). We verify the assumptions (A1)–(A5), (A6’) in order to apply
Theorem 2.3. First, (A1), (A2), and (A3) hold by definition. Let Jν , Yν denote the Bessel
functions of first (resp. second) kind and Kν denote the modified Bessel function of second
kind. For k ∈ Nodd and with αk := kω

√
α, βk := kω

√
β, the fundamental solution ϕk is (up to

a constant) then given by

ϕk(r) =

{
AkJ1(αkr) +BkY1(αkr), R < r < R + ρ,

K1(βkr), r > R + ρ.

with (
Ak

Bk

)
=

(
J1(αk(R + ρ)) Y1(αk(R + ρ))
αkJ

′
1(αk(R + ρ)) αkY

′
1(αk(R + ρ))

)−1(
K1(βk(R + ρ))
βkK

′
1(βk(R + ρ))

)
.

We begin by estimating the functions ϕk. Using the asymptotics (cf. [18])

J1(z) =
√

2
πz

(
sin(z − π

4
) +O

(
1
z

))
, J ′

1(z) =
√

2
πz

(
cos(z − π

4
) +O

(
1
z

))
,

Y1(z) =
√

2
πz

(
− cos(z − π

4
) +O

(
1
z

))
, Y ′

1(z) =
√

2
πz

(
sin(z − π

4
) +O

(
1
z

))
,

K1(z) =
√

π
2z
e−z
(
1 +O

(
1
z

))
, K ′

1(z) =
√

π
2z
e−z
(
−1 +O

(
1
z

))
as z → ∞, we find

Ak = −π
2
e−βk(R+ρ)

(√
βk

αk
cos(αk(R + ρ)− π

4
)−

√
αk

βk
sin(αk(R + ρ)− π

4
) +O

(
1
k

))
,
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Bk = −π
2
e−βk(R+ρ)

(√
βk

αk
sin(αk(R + ρ)− π

4
) +

√
αk

βk
cos(αk(R + ρ)− π

4
) +O

(
1
k

))
,

and thus

∥ϕk∥2L2
rad([R+ρ,∞)) =

π
4β2

k
e−2βk(R+ρ)

(
1 +O( 1

k
)
)
,

∥ϕk∥2L2
rad([R,R+ρ]) =

π
4αk

e−2βk(R+ρ)
(

αk

βk
+ βk

αk

)
ρ
(
1 +O( 1

k
)
)

as k → ∞. In particular we have

∥ϕk∥L2
rad([R,∞)) =

e−βk(R+ρ)

√
k

(
C +O

(
1
k

))
for some C > 0. We further have

ϕk(R) =
√

π
2αkR

e−βk(R+ρ)

(√
αk

βk
cos(αkρ) +

√
βk

αk
sin(αkρ) +O

(
1
k

))
ϕ′
k(R) =

√
αkπ
2R

e−βkR+ρ

(√
αk

βk
sin(αkρ)−

√
βk

αk
cos(αkρ) +O

(
1
k

))
.

Note that αk

βk
=
√

α
β

is constant.

As ϕk above is the fundamental solution, assumption (A4) holds, and the second part of as-
sumption (A5) follows directly from the asymptotics. Let ϑ = arctan

(
αk

βk

)
. Then

ϕk(R) =

√
π

2αkR

(
αk

βk
+ βk

αk

)
e−βk(R+ρ)

(
sin(αkρ+ ϑ) +O

(
1
k

))
.

ϕ′
k(R) = −

√
αkπ
2R

(
αk

βk
+ βk

αk

)
e−βk(R+ρ)

(
cos(αkρ+ ϑ) +O

(
1
k

))
.

By assumption of the theorem on the values T and ϑ we can write

αkρ+ ϑ =
kmπ

2n
+
mπ

2n
+
lπ

n
− ξ

for some l ∈ Z. Sincem,n are co-prime, the expression Zodd ∋ k 7→ αkρ+ϑmod π is 2n-periodic
and attains the n values

π

n
− ξ,

2π

n
− ξ, . . . , π − ξ

and no others. Further, none of these values are zeros of sine. This shows that also the first
part of assumption (A5) holds. In addition, we have

ϕ′
k(R)

ϕk(R)
= −αk

(
cot
(

((k+1)m+2l)π
2n

− ξ
)
+O

(
1
k

))
.

Therefore for ε > 0 sufficiently small we find infinitely many k ∈ Nodd such that

αkρ+ ϑ = π − ξ mod π and
ϕ′
k(R)

kϕk(R)
= ω

√
α cot(ξ) +O

(
1
k

)
≥ ω

√
δ + ε

hold. This verifies (A6’). Finally, we have checked all assumptions of Theorem 2.3 which
provides existence of T -periodic solutions. □
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Proof of Theorem 1.2, Part 4. Lastly we discuss the step potential with slab geometry, i.e. (17).
Like in part 3, we set αk := ωk

√
α, βk := ωk

√
β. Then the fundamental solutions ϕ̃k are (up

to a constant) given by

ϕ̃k(x) =

{
Ãk sin(αkx) + B̃k cos(αkx), R < x < R + ρ,

e−βkx, x > R + ρ

with (
Ãk

B̃k

)
=

(
sin(αk(R + ρ)) cos(αk(R + ρ))

αk cos(αk(R + ρ)) −αk sin(αk(R + ρ))

)−1(
e−βk(R+ρ)

−βke−βk(R+ρ)

)
= e−βk(R+ρ)

(
sin(αk(R + ρ))− βk

αk
cos(αk(R + ρ))

cos(αk(R + ρ)) + βk

αk
sin(αk(R + ρ))

)
.

Therefore (Ã4) holds and∥∥ϕ̃k

∥∥2
L2([R+ρ,∞))

= 1
2βk

e−2βk(R+ρ),∥∥ϕ̃k

∥∥2
L2([R,R+ρ])

= ρ
2
e−2βk(R+ρ)

(
1 +

β2
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α2
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)

so that ∥∥ϕ̃k

∥∥
L2([R,∞))

= e−βk(R+ρ)
(
C +O

(
1
k

))
holds for some C > 0 as k → ∞. In particular,

ϕ̃k(R) = e−βk(R+ρ)
(
cos(αkρ) +

βk

αk
sin(αkρ)

)
= e−βk(R+ρ)

√
1 + β

α
sin(αkρ+ ϑ)

and

ϕ̃
′
k(R) = −αke

−βk(R+ρ)
√

1 + β
α
cos(αkρ+ ϑ)

with ϑ = arctan

(√
α
β

)
. From here on we can argue almost identically as in the proof of part 3

for the verification of the conditions (Ã5) and (Ã6’). □

Appendix D. Numerical method

In this section we provide details on the generation of Figures 1 and 2. For simplicity, we only
consider the radial geometry setting.

As discussed in Section 3, solutions w to (12) can be obtained from critical points u of the
functional E, see (23), and in particular from the minimizer of E. We numerically minimize
E|Z over a finite dimensional space Z: E(u) ≈ minE|Z . Then from u we reconstruct an
approximate breather w using the formula (26).

Motivated by Section 4 we choose the ansatz space

Z =
{
u : u(x, t) =

∑
k∈Zodd
|k|≤K

fk(x)ek(t)
∣∣∣ fk ∈ F, f−k = fk

}
,
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where F is a (complex-valued) 1d finite element space, which we have chosen to be the space
of piecewise linear elements with equidistant nodes 0, R

N
, . . . , (N−1)R

N
, R.

The illustrations from Figures 1 and 2 are then obtained by choosing K = 64, N = 128 and
using a MATLAB built-in function to solve the minimization problem. The code to generate
them can be found in [31].
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