Local well-posedness for the nonlinear Schrödinger equation in the intersection of modulation spaces $M^s_{p,q}(\mathbb{R}^d)\cap M_{\infty,1}(\mathbb{R}^d)$ (bibtex)
by Chaichenets, Leonid, Hundertmark, Dirk, Kunstmann, Peer Christian and Pattakos, Nikolaos
Reference:
Local well-posedness for the nonlinear Schrödinger equation in the intersection of modulation spaces $M^s_{p,q}(\mathbb{R}^d)\cap M_{\infty,1}(\mathbb{R}^d)$ (Chaichenets, Leonid, Hundertmark, Dirk, Kunstmann, Peer Christian and Pattakos, Nikolaos), In Mathematics of Wave Phenomena (Dörfler, Willy, Hochbruck, Marlis, Hundertmark, Dirk, Reichel, Wolfgang, Rieder, Andreas, Schnaubelt, Roland, Schörkhuber, Birgit, eds.), Birkhäuser Basel, 2020.
Bibtex Entry:
@inproceedings {10.1007/978-3-030-47174-3_6,
       AUTHOR = {Chaichenets, Leonid and Hundertmark, Dirk and Kunstmann, 
                Peer Christian and Pattakos, Nikolaos},
        TITLE = {Local well-posedness for the nonlinear {S}chr\"{o}dinger 
                 equation in the intersection of modulation spaces 
                 $M^s_{p,q}(\mathbb{R}^d)\cap M_{\infty,1}(\mathbb{R}^d)$},
    BOOKTITLE = {Mathematics of Wave Phenomena},
         YEAR = {2020},
       EDITOR = {D\"{o}rfler, Willy and Hochbruck, Marlis and Hundertmark, Dirk
                 and Reichel, Wolfgang and Rieder, Andreas and Schnaubelt, Roland
                 and Sch\"{o}rkhuber, Birgit},
        PAGES = {89--107},
    PUBLISHER = {Birkh\"{a}user Basel},
        MONTH = {oct},
       SERIES = {Trends in Mathematics},
          DOI = {10.1007/978-3-030-47174-3_6},
          URL = {https://doi.org/10.1007/978-3-030-47174-3_6},
}
Powered by bibtexbrowser